El post que buscas se encuentra eliminado, pero este también te puede interesar

El Carburador 1era parte

Anuncios

El Carburador 1era parte


El objetivo del carburador es conseguir la mezcla de aire-gasolina en la proporción adecuada según las condiciones de funcionamiento del automóvil. El funcionamiento del carburador se basa en el efecto venturi que provoca que toda corriente de aire que pasa por una canalización, genera una depresión (succión) que se aprovecha para arrastrar el combustible proporcionado por el propio carburador. La depresión creada en el carburador dependerá de la velocidad de entrada del aire que será mayor cuanto menor sea la sección de paso de las canalizaciones.
Si dentro de la canalización tenemos un estrechamiento (difusor o venturi) para aumentar la velocidad del aire y en ese mismo punto se coloca un surtidor comunicado a una cuba con combustible a nivel constante, la depresión que se provoca en ese punto producirá la salida del combustible por la boca del surtidor que se mezclara con el aire que pase en ese momento por el estrechamiento, siendo arrastrado hacia el interior de los cilindros del motor.

distribucion


Principio de funcionamiento
Al ser un carburador un elemento mecánico todo su funcionamiento se basa en la depresión que crean los pistones del motor en su carrera de bajada hacia el PMI. Por lo que vamos a estudiar como se comporta el fenómeno de la depresión en el funcionamiento del carburador:

En un punto hay depresión si en éste reina una presión inferior a otra que se toma como referencia por ejemplo la (presión atmosférica).
Presión atmosférica es la presión que ejerce el aire de la atmósfera sobre los cuerpos y objetos. La unidad de la presión atmosférica es la "atmósfera", equivalente a 760 mm. de columna de mercurio o a 1 Kg./cm2 aproximadamente.

suspension


Si en dos puntos (figura superior) hay distinta presión y están comunicados entre si mediante una tubería, el aire irá al punto de mayor presión al de menor presión. El segundo punto estará en depresión respecto al primero.
Cuando el motor está parado todos los puntos están a la misma presión (presión = presión atmosférica), con lo que no hay movimiento, ni aspiración de aire o mezcla de combustible.

Cuando el pistón realiza su recorrido descendente en el tiempo de admisión se provoca un vacío en la cámara de combustión, por lo que la presión absoluta en la misma será muy inferior a la atmosférica; es decir habrá una gran depresión. Esta depresión se transmitirá a través de la tubería de admisión al carburador y hacía el exterior, lo que motivará la entrada en funcionamiento del carburador proporcionando gasolina que se mezclara con el aire que entra debido a la depresión, formando la mezcla de aire-combustible que después se quemara en el interior de la cámara de combustión del motor.
La depresión se transmitirá tanto mejor cuanto menos obstáculos encuentre en su camino. Si la mariposa del carburador está cerrada, ésta actuará como una pared respecto a la misma, por lo que encima de ella la depresión será muy pequeña, es decir, la presión será prácticamente igual a la atmosférica.
Por debajo sin embargo, la depresión será muy elevada, aproximadamente entre 600 y 800 gr/cm2.
A medida que se va abriendo la mariposa, la depresión se transmite a la zona del difusor, disminuyendo la misma en la zona por debajo de la mariposa.
Si aumentamos la sección de paso (abriendo la mariposa), el caudal de aire que pasará será mayor y la depresión en el difusor será también mayor por lo que arrastrara mas gasolina del surtidor hacia los cilindros.

Mezcla de combustible
Es la mezcla alre-gasolina que una vez introducida en las cámaras de combustión, combustiona y se expansiona aprovechándose dicha expansión para, a través de pistones y transmisión, impulsar el vehículo.
La mezcla combustible está compuesta por gasolina (combustible) y aire (comburente).
La energía química de la combustión se obtiene al quemarse el combustible. Luego, sin combustible (sólo con aire) no puede haber combustión. Asimismo es necesaria la presencia de aire para que esta combustión pueda llevarse a cabo. Luego para que la combustión se realice, es necesario que haya una correcta dosificación de aire y combustible.

Condiciones requeridas para la mezcla de combustible
La mezcla aire-combustible es la misión de la carburación que consiste en la unión intima del combustible con su comburente (aire). Esta unión determina la mezcla gaseosa de aire-combustible que se quema en el interior de los cilindros. El combustible mas empleado en la alimentación motores con carburador es la gasolina.
Para que la combustión se realice en perfectas condiciones y con el máximo rendimiento del motor, la mezcla aire-combustible que llega a los cilindro debe reunir las siguientes condiciones:

Correctamente dosificada: la dosificación exacta de la mezcla viene determinada por la relación estequiométrica (Re) o relación teórica que consiste en la cantidad de aire necesario para quemar una cantidad exacta de combustible. Experimentalmente se ha comprobado que la dosificación 1/15,3 (1 gr de gasolina por 15,3 gr de aire) es la que se combustiona en su totalidad.
Por consiguiente será conveniente que la mezcla combustible suministrada al motor sea de 1/15,3 (r = 1).
La dosificación de combustible tiene unos limites que los marca el llamado "limite de inflamabilidad", esta limitación viene cuando la dosificación de la mezcla llega a un punto que la mezcla ya no combustiona, bien por exceso de gasolina (excesivamente rica) o por defecto de gasolina (excesivamente pobre).
- dosificación mínima para ralentí 1/22 (r = 0,7)
- dosificación máxima para arranque en frío 1/4,5 (r = 3,3)
- dosificación para potencia máxima 1/12,5 (r = 1,2)
- dosificación para máximo rendimiento 1/18 (r = 0,85)
La relación estequiométrica (Re) para los combustibles empleados en motores de explosión es:

frenos



Finamente pulverizada o vaporización: es una de las características principales de los combustibles empleados en los motores con carburador. La vaporización del combustible durante la carburación se consigue en dos fases:
- En la primera fase, con una eficaz pulverización de combustible a nivel del surtidor, cuando este sale en finas gotas que se mezcla rápidamente con el aire.
- En la segunda fase, durante la admisión, debido al calor cedido por los colectores y cilindro, cuando el motor trabaja a su temperatura de régimen. La vaporización se completa durante la compresión de la mezcla, al absorber ésta el calor desarrollado por la transformación de la energía aportada por el volante.

Homogeneidad: La mezcla en el interior del cilindro debe ser homogénea en toda su masa gaseosa, para que la propagación de la llama sea uniforme, lo cual se consigue por la turbulencia creada a la entrada por la válvula de admisión y por la forma adecuada de la cámara de combustión.

Repartición de la mezcla: la mezcla debe llegar en las mismas condiciones e igual cantidad a todos los cilindros para cada régimen de funcionamiento, con el fin de obtener un funcionamiento equilibrado del motor. Como el dimensionado de las válvulas y el grado de aspiración en los cilindros deben ser idénticos, la igualdad en el llenado se consigue con unos colectores de admisión bien diseñados e igualmente equilibrados. De este modo la velocidad de la mezcla al pasar por ellos es la misma para todos los cilindros. A veces es necesario disponer varios carburadores para un llenado correcto de los cilindros, como ocurre en los motores de altas prestaciones o de muchos cilindros.

El carburador elemental
Según lo anteriormente explicado, los tres elementos básicos que componen un carburador son:


caja de cambios


Cuba del carburador: tiene como misión mantener constante el nivel de combustible a la salida del surtidor. Esta constituida (figura superior) por un depósito (5) situado en el cuerpo del carburador. Al depósito llega combustible bombeado por la bomba de combustible y entra a través de una pequeña malla de filtrado (1) y una válvula de paso (2), accionada en su apertura o cierre por una boya o flotador (4). La misión de la boya es mantener constante el nivel del combustible 1 a 3 mm por debajo de la boca de salida del surtidor. Este nivel recibe el nombre de nivel de guarda y tiene por objeto evitar que el combustible se derrame por el movimiento e inclinación del vehículo.
La regulación de entrada de combustible en la cuba consiste en una válvula que tiene una aguja, unida a la boya por medio de un muelle intermedio (3), la cual cierra el paso del combustible obligada por la acción de la boya. Cuando baja el nivel de combustible cede el muelle y se abre el paso al combustible y abre o cierra el paso del mismo, por el efecto de flotamiento de la boya en el liquido combustible.

El Carburador 1era parte



Surtidor: consiste en un tubo calibrado (7), situado en el interior de la canalización de aire del carburador, tiene su boca de salida a la altura del difusor o venturi (estrechamiento). Por su parte inferior va unido a la cuba, de la cual recibe combustible hasta el nivel establecido por le principio de vasos comunicantes.
A la salida de la cuba va montado un calibre o chicleur (6), cuyo paso de combustible, rigurosamente calibrado y de gran precisión, guarda relación directa con el difusor adecuado para cada tipo de motor. Tiene la misión de dosificar la cantidad de combustible que puede salir por el surtidor en función de la depresión creada en el difusor.

Colector o canalización de aire y difusor (venturi): el colector de aire forma parte del cuerpo del carburador y va unido por un lado al colector de admisión del motor y por el otro al filtro del aire. En el colector va situado el difusor o venturi que es simplemente un estrechamiento cuya misión es aumentar la velocidad del aire (sin aumentar el caudal) que pasa por esa zona y obtener así la depresión necesaria para que afluya el combustible por el surtidor. Este estrechamiento no tiene que tener aristas ni vértices agudos para evitar zonas de choque y formación de remolinos al pasar el aire.
El diámetro mínimo o estrechamiento máximo del difusor es convenientemente estudiado al diseñar un carburador, ya que guarda relación directa con el calibre (chicleur) del surtidor para obtener la dosificación correcta de la mezcla. Asimismo, la forma y dimensiones de los conos de entrada y salida de aire (como se ve en la figura inferior) guardan una cierta relación con las dimensiones del colector. Se ha demostrado experimentalmente que el mayor rendimiento del difusor se obtiene con un ángulo de 30º para el cono de entrada y un ángulo de 7º para el cono de salida.
Otra característica que se ha demostrado experimentalmente es que la mayor depresión y succión de combustible no coincide con el máximo estrechamiento del difusor sino un poco desplazada hacia la salida del difusor y cuya distancia seria 1/3 del diámetro de máximo estrechamiento. Por la tanto la boca del surtidor tendrá que coincidir con esta zona de máxima depresión (succión).

distribucion


Válvula de mariposa: sirve para regular el paso del aire y por lo tanto de la mezcla aire-combustible y con ello el llenado de los cilindros. Se acciona por el pedal del acelerador a través de un cable de tracción que une el pedal con el carburador.

suspension


El carburador elemental por si mismo no vale para instalarlo en un vehículo, ya que no se adapta a las diferentes fases de funcionamiento del vehículo. El carburador elemental presenta los siguientes inconvenientes:

No mantiene una dosificación constante (relación estequiométrica) a cualquier rango de revoluciones.
No tiene dispositivos que adapten la dosificación a cualquier tipo de regímenes (r.p.m.)
No mantiene ralentí
No tiene sistema de arranque en frío
No tiene enriquecimiento en casos de fuertes aceleraciones.

Las curvas de dosificación del carburador elemental nos indican como evoluciona el caudal de aire a medida que se abre la mariposa de gases y sube progresivamente hasta llegar a un punto donde la aspiración de aire se mantiene constante. La curva de caudal de combustible no empieza a la par que la del aire, lo que indica que la depresión creada en el difusor es insuficiente para succionar combustible del surtidor. A partir de ese momento el caudal del combustible crece mas rápidamente que el del aire.
El combustible tiene una viscosidad apreciable sobre todo cuando este ha de pasar por orificios muy pequeños (calibre o chicleur) que actúan como freno
Se observa que las dos curvas se cruzan en un punto (Re) este punto coincide con el valor teórico de la relación estequiométrica 1/15,3. Esto indica que la dosificación teórica se consigue solamente para un determinado régimen del motor, en el cual la velocidad del aire, a su paso por el difusor, crea la depresión creada para la succión de combustible en cantidad suficiente para obtener este tipo de mezcla. Esto se consigue, calibrando el surtidor, en función del diámetro del difusor o venturi para un numero de revoluciones normal del motor. Por debajo de este numero de revoluciones las mezclas resultan pobres y por encima las mezcla resultan ricas.
En la curva también se puede observar que existe una zona entre (0 - nr) en la que el carburador elemental no suministra combustible y, por tanto, el motor no funcionaria si no se dispone de un circuito auxiliar que alimente el motor durante ese intervalo (para esa misión se utiliza el circuito de ralentí que es un circuito paralelo al carburador elemental).
La zona sombreada en la curva indica las revoluciones que alcanza el motor térmico accionado por el motor de arranque.

frenos


Esquema de funcionamiento del carburador elemental
El carburador siempre estará acompañado físicamente de dos elementos fundamentales: uno es el que le suministra el aire o mas bien lo prepara para poder trabajar con el, filtrandolo y eliminado el polvo y todas las impurezas que contiene el aire. El otro elemento que acompaña al carburador es el que le suministra el combustible (bomba de combustible).

caja de cambios



Filtrado del aire de aspiración: el aire que entra al carburador se filtra antes de entrar al mismo. El filtro de aire iene la misión de eliminar el polvo y las impurezas que contiene el aire, evitando que estas lleguen al interior de los cilindros. La cantidad de polvo que contiene la atmósfera oscila entre 2 y 10 mgr/m3, esto nos da una idea teniendo en cuenta el gran volumen de aire que necesita un motor para quemar la mezcla de aire-combustible, de las cantidades de polvo que se introducen en el cilindro son relativamente elevadas. Este polvo, que se acumula en el interior de los cilindros, unido al aceite lubricante forma una pasta abrasiva que desgasta las válvulas, las paredes del cilindro y los segmentos.
Los filtros mas utilizados en vehículos de turismos son los "filtros secos". Estos filtros realizan el filtrado a través de un elemento filtrante a base de papel celuloso o de tejido. Esta constituido por un recipiente de chapa (4) con tapa en cuyo interior se aloja el elemento filtrante (2). Este elemento filtrante esta formado por un anillo de papel plegado en forma de acordeón, para disponer de mayor superficie de filtrado. El filtro tiene que ser de funcionamiento eficaz y montaje sencillo. La duración del cartucho filtrante es aproximadamente de 10.000 a 20.000 km de funcionamiento dependiendo del terreno donde circule el automóvil, en terrenos muy polvorientos se recomienda un cambio de filtro mas frecuente.

El Carburador 1era parte
distribucion


Suministro de combustible: se hace por medio de una bomba de combustible que tiene la misión de aspirar el combustible del depósito y enviarlo al carburador. Esta bombas pueden ser, según su funcionamiento, de accionamiento mecánico o eléctrico (estas ultimas, ya las hemos estudiado en los sistemas de inyección gasolina, por lo que aquí no las vamos a estudiar).
La bomba de combustible de accionamiento mecánico, esta formada por un cuerpo o carcasa (1) construido en dos mitades, entre las cuales va sujeta la membrana elástica (2) que sirve de émbolo, aspirando y comprimiendo el combustible en el interior de la recamara (3). En la parte superior van situados los orificios de entrada y salida de combustible, las válvulas de paso (4 y 5) y el filtro (8). En la parte inferior de la bomba va montado el vástago (7) unido a la membrana elástica y a la palanca de accionamiento (9), que recibe movimiento de la excéntrica del árbol de levas (10). El conjunto de la bomba se sujeta al bloque motor por medio de una brida con tornillos y se interponen unas juntas de cartón amianto y en medio de ellas la placa aislante, que protege la bomba del calor que genera el motor y evita la prematura gasificación del combustible.

Funcionamiento de la bomba: cuando la membrana (2) desciende impulsada por la palanca (9), el vacío interno creado en la recámara (3) abre la válvula (4) y aspira el combustible del depósito que llega por el conducto de entrada de combustible y pasa por el filtro (6), a través de la válvula (4), para llenar el recinto de la recamara (3). Al cesar la acción de la palanca (9), la membrana (2) comprime el combustible de la recámara (3) por efecto del muelle (8). Esta presión hace que se cierre la válvula (4) y se abra la válvula (5), pasando combustible a través de ella por el conducto de salida hacia la cuba del carburador. En la posición neutra o de reposo de la bomba, la presión del combustible al no poder ir hacia el carburador por tener la cuba llena, empuja la membrana hacia abajo y mantiene las válvulas cerradas. La palanca de accionamiento y el muelle no actúan por no poder mover la membrana que esta bajo presión..

suspension
frenos
caja de cambios


Componentes de un carburador

Para poder conseguir unas dosificaciones de mezcla adaptadas a todas las condiciones de funcionamiento del motor, ademas del carburador elemental necesitamos unos dispositivos para la corrección automática de las mezclas, como son:

Un sistema de funcionamiento para marcha normal, constituido por el carburador elemental (ya estudiado), adecuando la dosificación de mezcla en sus calibres a una dosificación teórica de de 1/15.
Un circuito que proporciona la cantidad de combustible necesario para el funcionamiento del motor a bajas revoluciones (ralentí).
Un sistema automático corrector de mezclas, formado por el circuito compensador de aire, para que a bajas y altas revoluciones del motor la dosificación de la mezcla se mantenga igual a la dosificación teórica.
Un circuito economizador de combustible, para adecuar la riqueza de la mezcla a una dosificación de máximo rendimiento, con independencia de la carga de los cilindros.
Un circuito enriquecedor de mezcla (bomba de aceleración), para casos críticos de funcionamiento a máxima potencia.
Un dispositivo para el arranque del motor en frío.

El Carburador 1era parte


Circuito de ralentí
Es un circuito derivado o auxiliar del circuito principal (carburador elemental). Su misión es proporcionar el caudal de mezcla necesario para vencer las resistencias pasivas del motor (resistencias debidas a rozamientos internos del motor así como los órganos que lo acompañan como: alternador, servodirección, etc.). El funcionamiento del circuito de ralentí se mantendrá hasta que entre en funcionamiento el circuito principal (carburador elemental). El circuito de ralentí funciona entre 700 y 900 r.p.m. del motor.

distribucion


Constitución
Consiste en un circuito auxiliar (1) que alimenta a los cilindros del motor por debajo de la mariposa de gases (2). Este circuito toma aire de la zona alta del difusor a través de un calibre de aire (3) y succiona el combustible de un surtidor (4) que esta alimentado por la cuba situada en paralelo con el surtidor principal (5). El caudal de salida se regula por medio del calibre (6). La riqueza de la mezcla emulsionada es regulada por medio de un tornillo de estrangulación (7) que suele denominar en muchos carburadores con la letra "W".

suspension


Funcionamiento
Cuando arrancamos el motor el motor sube hasta las 700 - 900 r.p.m., la mariposa de gases esta prácticamente cerrada. La depresión que crean los cilindros en su movimiento de admisión no se transmite al difusor debido a la posición de la mariposa, por lo que el circuito principal no funciona. Sin embargo la gran depresión que existe debajo de la mariposa de gases, si se transmite por el circuito auxiliar (1) al exterior a través del cono del tornillo de regulación (7). La depresión se transmite por el circuito auxiliar hasta el calibre de aire (3) y succiona combustible del surtidor (4), procedente de la cuba, que se mezcla con el aire exterior. La mezcla pasa a través del tornillo de regulación (7) hacia los cilindros y se mezcla con el poco aire que deja pasa la mariposa de gases por el espacio anular (8) que queda entre ella y el cuerpo del colector de aire.

Cuando regulamos el ralentí actuamos sobre dos variables:

Regulación de la riqueza de mezcla: se regula con el tornillo (7), "W" se le llama en muchos manuales, con este tornillo estrangulando mas o menos la depresión transmitida a la zona alta del difusor. Cuanto mayor es la apertura del tornillo, mejor se transmite la depresión existente por debajo de la mariposa de gases y, por tanto, mayor es la velocidad del aire a su paso por el conducto (1) y, en consecuencia, también lo es la cantidad de combustible succionada del surtidor (4).
Regulación del caudal de la mezcla: El caudal de la mezcla que llega a los cilindros, y por tanto la velocidad de giro en el motor a ralentí, se regula por medio de la mariposa de gases, abriendo mas o menos el paso anular de la misma en el colector de admisión. Ambos reglajes (caudal de aire en la mariposa y riqueza de la mezcla en el circuito auxiliar) deben estar perfectamente combinados, ya que una mayor apertura de mariposa trae consigo una mayor aportación de aire adicional y, por tanto, un empobrecimiento de la mezcla. Esto puede hacer que el motor se pare por falta de combustible. Por esta razón se debe adecuar, en función de esa velocidad de régimen, la riqueza de mezcla por medio del tornillo "W".

frenos


Progresión hasta el encebado del circuito principal
El motor funcionando en ralentí no tiene dificultades para seguir girando, pero cuando pisamos el acelerador, la mariposa de gases se abre progresivamente, aumenta el caudal de aire y sin embargo el circuito principal del carburador no funciona por que todavía no hay depresión suficiente, como consecuencia se empobrece la mezcla, con lo cual llega un momento en que, por falta de combustible suficiente, el motor se para.
Para evitar este problema, se disponen disponen por encima de la mariposa de gases, unos orificios (11) de progresión (by-pass) que se comunican con el circuito de ralentí, de forma que, cuando el motor gira a este régimen, estos orificios quedan por encima de la mariposa de gases y no actúan porque en esa zona la depresión es baja.

caja de cambios


A medida que se abre la mariposa de gases, para pasar de funcionamiento de ralentí a funcionamiento normal, se destapa uno de estos orificios by-pass y se transmite por el una mayor depresión al exterior, con lo cual la succión de combustible aumenta, para compensar el paso de mayor caudal de aire que permite la mariposa. Por el orificio by-pass sale la mezcla de ralentí lo mismo que sale también por el orificio de paso que gradúa el tornillo de paso "W".
Cuando la acción de la mariposa obliga a descubrir el segundo orificio de by-pass, la depresión no aumenta en el circuito de ralentí, ya que parte de ella se transmite por el colector principal, pero aumenta en cambio la salida de mezcla que, en este momento, sale por los dos orificios y por el orificio de paso que le permite el tornillo "W". En estas condiciones el motor se mantiene en funcionamiento transitorio hasta que la depresión en difusor es ya suficiente para el cebado y succión del circuito principal.
Una vez que este circuito está en funcionamiento, el circuito de ralentí continua actuando hasta que la velocidad del aire a su paso por el difusor, por tener mejor acceso, anula la succión por el soplador de ralentí y este circuito deja de funcionar.

Interferencias entre el circuito principal y el de ralentí
Cuando el circuito principal entra en funcionamiento, el surtidor principal suministra el caudal de combustible necesario, lo que hace bajar el nivel en el surtidor de ralentí hasta vaciarlo. Ocurre que cuando la mariposa de gases vuelve a su posición de ralentí, el circuito principal se desenceba por falta de depresión y deja de funcionar; pero como el circuito de ralentí no puede succionar combustible en ese momento, por estar el surtidor vacío, el motor se para.
Para evitar este problema se practica un orificio calibrado (12, figura de arriba) de no inversión a la altura del difusor, que se comunica con el surtidor (4) de ralentí. Este orificio mantiene una depresión suficiente en el mismo para que el nivel no descienda y así, al retornar la mariposa de gases a su posición de ralentí, este circuito entra inmediatamente en funcionamiento.

Sistema automático corrector de mezcla (compensador)
En el estudio del carburador elemental se vio que a grandes velocidades y aumento de numero de revoluciones del motor, el enriquecimiento de la mezcla aumentaba innecesariamente, aumentando por tanto el gasto de combustible. Para frenar el gasto de combustible en esos momentos. el mismo aire de aspiración que circula a gran velocidad se encargara de frenar la salida de combustible por el surtidor.
Según el método empleado, el sistema corrector de mezcla puede ser de dos tipos:

Por compensación del aire sobre el surtidor principal.
Con surtidor auxiliar y pozo de compensación.

Corrector de mezcla por compensación en el surtidor principal
Este sistema consiste en que en el surtidor principal (5) se introduce un tubito llamado pozo compensador o emulsionador (2), con varios orificios a distintas alturas, y que comunica en su parte superior con el colector de admisión por medio de orificio calibrado (4), llamado soplador.
Cuando el motor funciona a régimen normal, el calibre o chiclé principal (1) proporciona un caudal de combustible necesario para el funcionamiento del motor dentro de la dosificación teórica, por lo que el pozo compensador se mantiene se mantiene lleno hasta el nivel establecido y con todos los orificios del tubo compensador tapados.
Cuando la depresión en el surtidor aumenta, debido al mayor numero de revoluciones del motor, la succión de combustible es mayor y arrastra mayor cantidad de combustible del que deja pasar el calibre (1), con lo cual el nivel del surtidor baja. Al quedar libres los orificios del tubo emulsionador (2), se establece una corriente de aire que entra por el calibre de aire (4) y sale por los orificios destapados. Esta corriente de aire se mezcla con el combustible que sale por el surtidor y proporciona, de esta forma, un caudal de combustible rebajado a la corriente de aire que pasa por el difusor.
Cuanto mayor sea el numero de revoluciones del motor, mayor será la depresión y descenso del nivel del pozo, con lo que al destaparse mayor numero de orificios la cantidad de aire que entra por ellos es mayor y, por tanto, la cantidad de combustible que sale por el surtidor se empobrece en la en la misma proporción.

El Carburador 1era parte


Ajuste y reglaje de los calibres (chicleur)
El calibre principal (1) de paso de combustible y el calibre de aire (4) deben de estar perfectamente calibrados y ajustador para que guarden una cierta relación entre sí, de forma que el empobrecimiento de la mezcla resultante se ajuste a la dosificación teórica.

distribucion


Hay distintos tipos de surtidores con correctores de riqueza, por ejemplo la marca Solex muy popular en vehículos europeos, utiliza tres sistema que se aplican al surtidor según los casos. Al sistema corrector de mezcla lo llaman "automaticidad".


Corrector de mezcla con surtidor auxiliar y pozo de compensación
En otros modelos el sistema compensador o corrector de mezcla consiste en añadir un surtidor más, como ocurre en los carburadores de la marca Zenith. Ademas del surtidor principal lleva otro surtidor auxiliar (2) alimentado directamente por la cuba (7), cuya caudal es controlado por un calibre de menor paso (4) y un pozo compensador intermedio (5) que se comunica con la atmósfera a través de un calibre de aire (6).
Ambos surtidores están calibrados, para que aporten en conjunto un caudal de combustible correspondiente a la dosificación teórica en marcha normal de funcionamiento. Estos surtidores no pueden intercambiarse entre sí.

Funcionamiento
Cuando la depresión en el difusor sobrepasa a la de funcionamiento normal, al ser la aportación de combustible inversamente proporcional a su diámetro para una misma succión, baja el nivel del pozo (5) y se suministra menor cantidad de combustible, al ser mayor el recorrido para salir del surtidor, con lo cual la mezcla se empobrece progresivamente.
Cuando el pozo compensador se ha vaciado, se establece una corriente de aire que pasa por el calibre (6), arrastrando el combustible que sale por el calibre (4) para mezclarse con la mezcla del surtidor principal (1) y proporcionando a los cilindros una mezcla de máximo rendimiento en cuanto a la dosificación de la misma.

suspension


Economizadores
La acción empobrecedora del sistema compensador puede ser reforzada en ciertos momentos mediante el empleo de economizadores, que actúan sobre la cantidad de combustible de la mezcla o sobre la cantidad de aire. El sistema compensador o corrector de mezclas no tiene en cuenta la apertura de la mariposa, enriqueciendo la mezcla para pequeñas aperturas de mariposa, pero para grandes aperturas la mezcla se empobrece demasiado al entrar gran cantidad de aire en los cilindros.
Los economizadores de combustible actúan en los momentos en que no se necesita una gran potencia del motor y enriquecen la mezcla cuando se necesita esta potencia en la zona de máxima apertura de mariposa.
Los sistemas empleados pueden ser de dos tipos:

Economizador por freno de combustible
Economizador por regulación del aire de compensación

Economizadores por freno de combustible

Sistema de econostato simple: es uno de los mas utilizados, consiste en un tubo sobrealimentador de paso calibrado, sumergido directamente en la cuba y que desemboca en la entrada de aire principal del colector por encima del difusor.
Funciona por succión directa del combustible cuando la velocidad del aire a su paso por el colector (grandes cargas) es lo suficientemente elevado para succionar el combustible por la boca del tubo.
Este sistema tiene la ventaja de que puede utilizar un surtidor principal de menor diámetro, capaz de suministrar un caudal de combustible adecuado y en combinación con el sistema compensador. Se emplea para dosificaciones de máximo rendimiento en el motor (1/18) y en los momentos de plena carga, cuando se solicita la máxima potencia del motor. El econostato suministra el caudal de combustible complementario para una dosificación de máxima potencia (1/12,5), con lo cual se consigue una economía de combustible a bajos regímenes de funcionamiento del motor y una mezcla rica en las máximas prestaciones de potencia.

frenos


Sistema de econostato comandado: consiste en un circuito sobrealimentador de combustible en el circuito principal, regulado por una válvula de membrana, controlada a su vez por un tubo de vacío situado por debajo de la mariposa de gases.
- Para pequeñas y medianas aperturas de la mariposa de gases, la depresión existente por debajo de ella es grande. Dicha depresión se transmite por el tubo hasta la cámara de vacío de la válvula de membrana, venciendo la acción del muelle y tirando de la membrana que cierra la válvula. De esta forma se corta el suministro de combustible al conducto sobrealimentador. En estos casos el surtidor principal es solamente alimentada por su calibre de paso o chicleur y el que actua en la corrección de la mezcla es el sistema compensador, adecuandola al numero de revoluciones motor.
- Para regimenes de máxima apertura de la mariposa de gases (solicitud de máxima potencia en el motor) la depresión por debajo de la mariposa es pobre e insuficiente para vencer la fuerza del muelle. Entonces la válvula abre el conducto sobrealimentador, que proporciona un caudal de combustible supletorio, controlado por el calibre que tiene el econostato. Esto hace subir el nivel en el surtidor principal y proporciona, para ese régimen de funcionamiento, una mezcla de dosificación máxima (1/12,5).
En deceleración, la mariposa de gases vuelve a cerrarse y actúa nuevamente la depresión por debajo de ella sobre la válvula de membrana, que se cierra para frenar el gasto de combustible.

caja de cambios
El Carburador 1era parte


Economizador por regulación de aire de compensación
En este sistema se dispone en pozo del circuito compensador (1) con doble surtidor auxiliar de aire (2), una válvula (3) que controla la aportación de aire en la corrección de mezcla por compensación. Dicha válvula actua, como en el caso anterior, en función de la depresión existente por debajo de la mariposa de gases, según la apertura de la misma. El pozo compensador dispone de una doble entrada de aire (2) (dos calibres de aire).
- Para pequeñas y medianas aperturas de mariposa de gases, la depresión existente por debajo de ella crea el vacío suficiente en el tubo (5) para vencer la acción del muelle (4) y atraer a la válvula de cierre (3), que deja libre los dos pasos de aire (2) al pozo compensador. En esta posición, la aportación del aire al circuito compensador entra por los dos calibres de aire y actúa el corrector de mezcla normalmente.
- Para grandes aperturas de mariposa, proximas a la máxima solicitud de potencia, la depresión en el tubo (5) es insuficiente para atraer la válvula (3), por efecto de su muelle (4), cierra uno de sus pasos de aire, y al ser menor la aportación de aire en el circuito corrector de mezcla, esta se enriquece a la salida del surtidor auxiliar. Ambos pasos de aire (2) estan calculados para una dosificación conjunta de 1/15 y para que la dosificación individual alcance la de máxima potencia (1/12,5).

distribucion


Bomba de aceleración
Cuando se pisa el pedal del acelerador con decisión para conseguir una aceleración rápida, por ejemplo: para hacer adelantamientos o subir cuestas, se precisa de un dispositivo en el carburador que enriquezca la mezcla de forma inmediata. Al acelerar de forma decidida, la mariposa de gases se abre de golpe, pero la mezcla no se enriquece de inmediato ya que, por efecto de inercia, el combustible tarda mas en llegar al surtidor y, como el aire reacciona al instante, la mezcla se empobrece momentáneamente. Para evitar este inconveniente se instala en el carburador un circuito de sobrealimentación, cuya misión es proporcionar una cantidad adicional de combustible al circuito principal, con objeto de enriquecer momentáneamente la mezcla y obtener la potencia máxima instantánea del motor, hasta el momento en que actúe el enriquecedor de mezcla.

Se diferencia varios tipos de bombas de aceleración:

Bomba de aceleración de membrana: esta constituida por un tubo inyector de combustible (8), con su boca de salida en el interior del colector de aire, comunicado con la cuba de donde toma combustible, a través de una válvula antirretorno (2). De aquí pasa al interior de la cámara de la bomba donde esta la membrana (1) que es accionada por la palanca articulada (6). La bomba aspira combustible de la cuba cuando es empujada hacia la derecha por el muelle (3). Cuando se pisa el acelerador se transmite el movimiento de apertura de la mariposa a través de la varilla de mando (4), está, a su vez, empuja la palanca articulada (6) hacia a la izquierda, moviendo también la membrana (1) que empuja bombeando el combustible a través de la válvula antirretorno (7) hacia el tubo inyector de combustible (8). Con esto se inyecta combustible extra en le colector de aire para enriquecer la mezcla en momentos en se solicita máxima potencia al motor.
Como se puede observar, la inyección de combustible es momentánea, pues al pisar el acelerador solo se produce una inyección de combustible. Al dejar de acelerar, la membrana (1) retrocede y aspira combustible de la cuba para llenar nuevamente la cámara de la bomba. Así queda preparada para la próxima inyección de combustible.

suspension


Bomba de aceleración de émbolo: muy parecida a la anterior, en este caso utiliza un émbolo (4), que movido también por la mariposa de gases aspira combustible a través de una válvula antirretorno (5) para llenar su cilindro o cámara de bombeo, cuando el embolo (4) es empujado hacia abajo por la palanca de mando (1), se bombea el combustible a través de la válvula antirretorno de salida (6) hacia el tubo inyector situado en el colector de aire.

frenos


Dispositivos de arranque en frío
Cuando el motor esta frío, el combustible que se suministra al motor por parte del carburador se condensa en las paredes de los colectores, por lo que el cilindro no le llega apenas combustible. Si a esto se añade la escasa succión que provocan los pistones cuando el motor de explosión es movido por el de arranque, tendremos una gran dificultad para conseguir que el motor de explosión se ponga en marcha. Para asegurar el arranque en frío se dispone de un sistema que aumenta la riqueza de la mezcla lo suficiente (r = 1/4), compensando así las perdidas de combustible por condensación en las paredes.
El sistema de arranque en frío se le llama comúnmente "estrangulador" o bien "starter".

Clasificación
Se pueden diferenciar varios sistemas de arranque en frío, por su forma de accionamiento (manuales y automáticos) y por su forma constructiva (estrangulador, starter):

1 Manuales: - starter; bistarter
- estrangulador
El mando de puesta en funcionamiento y fuera de servicio es "manual".

2 Automáticos: - starter
- estrangulador
El mando de puesta en funcionamiento y fuera de servicio es "automático".
El elemento que abre o cierra el el starter o estrangulador puede ser un:
- Lamina bimetálica
- Elemento termodilatable
Pueden calefactarse mediante agua, resistencia eléctrica o aire caliente.

Estrangulador manual: uno de los dispositivos mas empleados, consiste en una segunda mariposa de gases (1), colocada por encima del difusor, la cual puede ser cerrada mecánicamente por medio de una varilla o cable unido a un mando situado en el interior del habitáculo (salpicadero) y al alcance del conductor.
La mariposa del estrangulador va montada con su eje descentrado (5) y combinada por un sistema de varillas de unión con la mariposa de gases (6), de forma que, cuando se cierra la mariposa de estrangulación de aire, se abre un poco la mariposa de gases (abertura positiva), permitiendo un mayor numero de revoluciones del motor en su funcionamiento a ralentí y asegurando el funcionamiento del motor una vez arrancado.
El enriquecimiento de la mezcla (r = 1/4) se produce debido a que, al estar cerrada la entrada de aire por encima del difusor, la depresión creada por los cilindros no puede transmitirse al exterior. Esto crea una gran depresión a la altura del surtidor de combustible, con lo cual la succión en el mismo es grande, aportando al poco aire que deja pasar la mariposa estranguladora gran cantidad de combustible, lo que proporciona a la mezcla una dosificación muy rica, necesaria para el arranque del motor en estas condiciones.
Una vez arrancado el motor, cuando este aumenta de revoluciones, también aumenta la riqueza de la mezcla. Cuando disminuye la condensación (por calentamiento del motor), la succión de aire es mas fuerte, lo que hace que la mariposa estranguladora se abra parcialmente por efecto de su eje descentrado, permitiendo un mayor paso de aire que compensa el enriquecimiento de la mezcla, para que el motor no se ahogue por exceso de combustible.
Cuando el motor ha alcanzado su temperatura de régimen, hay que abrir la mariposa de arranque en frío, con lo cual la mariposa de gases vuelve a su posición normal de funcionamiento a ralentí.
En algunos carburadores se coloca sobre la mariposa estranguladora una "válvula empobrecedora" que controla la entrada de aire a medida que el motor toma revoluciones, permitiendo, a través de la misma, un mayor caudal de aire que compensa la riqueza de la mezcla a medida que el motor se calienta.

caja de cambios
El Carburador 1era parte


Starter manual: es el formado por un circuito auxiliar para arranque en frío. Se prescinde del la mariposa estranguladora y con un circuito auxiliar se alimenta directamente a los cilindros por debajo de la mariposa de gases. Para controlar este circuito se utiliza una válvula de cierre giratoria de mando manual que acciona el conductor desde el tablero de mandos.
Cuando se quiere arrancar el motor se abre la válvula de paso (4) formada por un disco con unos orificios que cuando coinciden dejan pasar la mezcla aire-combustible que circula por el circuito auxiliar (1) y sale por debajo de la mariposa de gases (5) al colector de aire. La aspiración de mezcla a través del circuito auxiliar se efectúa por la depresión que existe en el colector por debajo de la mariposa de gases (5). Cuando la mariposa esta cerrada, la depresión que se transmite por este circuito a la parte alta del carburador crea una corriente de aire auxiliar que entra por el conducto (3) y succiona combustible del surtidor auxiliar (2) calibrado para obtener gran riqueza en la mezcla) que se une con el aire que deja pasar la mariposa de gases, para alimentar los cilindros.
A medida que el motor gira mas deprisa, la aspiración de aire por el colector es mayor. Así se regula la riqueza de la mezcla que llega a los cilindros y se frena en parte el aire que entra por el conducto (3), lo que hace que la succión de combustible sea menor. Cuando el motor alcanza su temperatura de régimen se cierra la válvula, quedando anulado el circuito de arranque en frío.

distribucion


Estrangulador automático: en este dispositivo el accionamiento de la mariposa estranguladora se realiza de manera automática sin intervención del conductor. También dentro de la denominación "starter" esta el sistema que prescinde de la mariposa estranguladora y se sustituye por un circuito auxiliar de alimentación para arranque en frío.
En los sistemas que utilizan válvula estranguladora se utiliza un muelle de lamina bimetalica que, al contraerse por el frío, cierra mas o menos la mariposa. Esta se abre por dilatación del muelle, cuando el motor ha alcanzado su temperatura de régimen.
La mariposa estranguladora, a su vez, va unida a una válvula que actúa en función de la depresión creada por los cilindros debajo de la mariposa de gases. Esta válvula abre progresivamente la mariposa de arranque en frío, a medida que la depresión es mayor, y permite un mayor paso de aire para compensar la riqueza de la mezcla, cuando el motor se revoluciona.

suspension
frenos


Starter automático: Seria igual que el starter manual, la diferencia esta en el accionamiento que seria automático, por medio un elemento termodilatable, por ejemplo una lamina bimetálica en forma de espiral.

caja de cambios



Tipos de carburadores
Existen muchas marcas y tipos de carburadores, entre las distintas marcas de carburadores están: Solex, Zenith, Weber, Stromberg, Carter, Irz, etc.
Según la forma y disposición de sus elementos constructivos, se pueden clasificar en los siguientes grupos:

Carburadores de difusor fijo
Carburadores de difusor variable
Carburadores dobles
Carburadores de doble cuerpo (escalonados).

Carburadores de difusor fijo
Este tipo de carburador al que pertenecen la mayoría de los modelos de todas las marcas (excepto los carburadores S.U) se caracterizan por mantener constante el diámetro del difusor o venturi, con lo cual la velocidad del aire y la depresión creada a la altura del surtidor son siempre constantes para cada régimen del motor, en función de la mayor o menor apertura de la mariposa de gases.
Los diferentes modelos o marcas de carburadores existentes en el mercado, basan su funcionamiento en los principios teóricos ya estudiados en capítulos anteriores, se diferencia esencialmente en la forma de realizar la regulación de la mezcla, empleando uno u otro dispositivo que ya iremos viendo.
La toma de aire en todos los circuitos y la aireación de la cuba se realizan a través del colector principal, asegurando así en todos los pasos de aire, la purificación del mismo por medio del filtro.
Estudiaremos cada marca de carburador por separado en capitulos posteriores del curso.

Se puede hacer otra clasificación dentro de los carburadores de difusor fijo y tiene que ver con la posición del colector de aire y su difusor:

vertical ascendente
vertical descendente o invertido (el mas utilizado)
horizontal o inclinado

El Carburador 1era parte


Carburadores dobles
El carburador doble utilizado generalmente en vehículos de altas prestaciones y de competición, esta formado por dos carburadores simples, como los ya estudiados unidos en un cuerpo común. Lleva dos colectores de aire y cada uno de los carburadores tiene todos los circuitos correspondientes para la formación y dosificación de la mezcla. Cada uno de los colectores desemboca por separado en un colector de admisión independiente para alimentar con cada uno de los carburadores a la mitad de los cilindros del motor. De esta forma se consigue un mejor llenado de los mismos y un perfecto equilibrio en relación con la mezcla.

distribucion


Se alimenta de una cuba "común" que suministra cantidades de combustible equivalentes a cada uno de los carburadores. El mando de los mismos se realiza con el acelerador del vehículo, que acciona simultáneamente las dos mariposas de gases, unidas por un eje común.
Para el resto de circuitos (compensación, economizadores, bomba de aceleración y arranque en frío) se adopta el sistema correspondiente a cada tipo o marca de carburador.

suspension


Existen motores sobre todo de competición que utilizaban un carburador por cilindro, todos los carburadores sincronizados para abrir y cerrar la mariposa de gases al mismo tiempo. El inconveniente de estos carburadores es que tienen que estar perfectamente equilibrados para suministrar el mismo caudal de mezcla a cada uno de los cilindros del motor.

frenos


Carburadores de doble cuerpo o escalonados
Cuando la cilindrada de un motor ronda los 1.5 L. el volumen de mezcla a suministrar para alimentar el motor es apreciable. Debido a esto, nos surgen varios inconvenientes, por una parte nos conviene que el diámetro del difusor sea estrecho para cuando se circula a bajas r.p.m., con objeto de que el aire se acelere y vaporice la gasolina que aspira del surtidor. Pero cuando se necesita potencia, si el difusor es muy estrecho limita el paso de aire por el colector. Para solucionar estos problemas están los carburadores de doble cuerpo, que tienen una sola entrada de aire por un filtro de aire único, también tienen una sola cuba de combustible. y un único sistema de arranque en frío, los demás elementos y circuitos que forman un carburador son independientes.

caja de cambios


De los dos cuerpos que forman el carburador, uno es el llamado "principal" (se distingue por tener la mariposa de gases mas pequeña, diámetro menor), proporciona toda la mezcla necesaria al motor mientras el acelerador se pisa hasta un tercio o la mitad de su recorrido; mas a fondo empieza a abrirse ya rápidamente la mariposa del segundo cuerpo (secundario), con lo que se proporciona al motor gran volumen de mezcla para grandes cargas del motor (acelerador pisado al máximo). En este tipo de carburadores el estrangulador para arranque en frío, va montado en el cuerpo principal, en algunos casos, en otros como en la figura superior, lleva mariposa estranguladora en los dos cuerpos..
Estos carburadores, pueden tener los cuerpos de diferentes dimensiones y se aplican a motores de 4 y 6 cilindros.

El Carburador 1era parte


Constitución y funcionamiento
Este carburador esta formado por dos colectores de admisión unidos por un cuerpo común, con dos surtidores independientes alimentados por una cuba común. En el cuerpo principal, se dispone un difusor de menor diámetro que en un carburador normal, para conseguir, a bajas r.p.m. del motor, una mayor velocidad de aire y, por tanto, una mejor succión de combustible para formar la mezcla. En el segundo cuerpo del carburador (cuerpo secundario), que solo funciona a altos regímenes del motor, se dispone un difusor mas ancho para obtener un mejor llenado de los cilindros para grandes cargas del motor.
Las mariposas de gases (5) y (6) en los dos cuerpos del carburador van sincronizadas en su apertura, de forma que, hasta un determinado régimen de funcionamiento, la mariposa del segundo cuerpo permanece cerrada, por lo que este cuerpo no proporciona mezcla. Pero cuando la mariposa de gases del cuerpo principal alcanza un determinado régimen de funcionamiento (aproximadamente los 2/3 del recorrido), comienza la apertura de la mariposa (6) en el cuerpo secundario. Este carburador empieza entonces su funcionamiento a ralentí, que aporta su mezcla a la del cuerpo principal. A partir de ese momento, se abre la mariposa de gases secundaria sincronizada con el cuerpo principal, pero mas rápidamente que esta, de forma que, con el acelerador pisado a fondo, ambas mariposas están totalmente abiertas.

distribucion


Moviendo progresivamente el pedal del acelerador (figura inferior), se abre primero la mariposa de gases del cuerpo principal (A), accionada desde la palanca (1) unida a su eje. Llegada a un cierto ángulo de apertura, el tetón tope de arrastre (2) obliga al sector dentado a seguir en su movimiento a la mariposa (A), lo que a su vez implica el comienzo de la apertura de la mariposa del segundo cuerpo (B), cuyo sector engrana directamente con el del primero. A causa de la diferencia de radios de estos sectores, la velocidad con se que abren ambas mariposas es diferente.

suspension
frenos


Circuito de ralentí
Este circuito con su calibre de mezcla y pasos de by-pass, va dispuesto en el cuerpo principal para la alimentación del motor en vacío. En el segundo cuerpo hay un circuito análogo, pero sin regulador de mezcla, que sirve como paso de transición desde que la mariposa de gases de este cuerpo comienza a abrirse hasta que entra en funcionamiento el surtidor principal del segundo cuerpo.

caja de cambios


Sistema compensador
Este sistema para la regulación de la mezcla suele ser de tubo de emulsión. Se instala en cada uno de los surtidores de ambos cuerpos, los cuales regulan por separado la riqueza de la mezcla en cada uno de los circuitos .

Dispositivos especiales
Como dispositivos de arranque en frío, econostato y bomba de aceleración se emplea uno de los sistemas ya estudiados. El de arranque en frío va montado sobre el cuerpo principal del carburador, ya que este es el que actúa en el momento de arranque. El econostato y la bomba de aceleración se disponen sobre el cuerpo secundario, ya que el enriquecimiento de la mezcla debe realizarse a grandes cargas del motor, precisamente cuando entra en funcionamiento el segundo cuerpo.




Comentar todavía es gratis


El Carburador 1era parte

Anuncios

Comentarios Destacados

eltyrano +6
Quede asi cuando entre.
distribucion

Excelente info!

10 comentarios - El Carburador 1era parte

Eddi_The_Head +1
buen post, mucha informacion para quien no lo conoce
Tomahawk- +1
Gracias por compartir, cuando tenga tiempo voy a leerlo. +10
eltyrano +6
Quede asi cuando entre.
distribucion

Excelente info!
xztian +1
+5 (porque es todo lo que queda) y Fav...
Pablo +1
Gracias che !
pavopavone +1
Muy bien explicado. Se entiende. Recomendado.
Salva79canalla +1
Muy bueno los 5 post!! Te tiro los puntos en este?
pavopavone +1
Ya lo recomendé los otros días, pero no tenía puntos. Te los dejo ahora. +10
vaporel +1
te debo +10 me gusto tu post
carlos-bar
Muy bueno este articulo copiado de la web de "Aficionados a la Mecanica". El link de la web es: www.aficionadosalamecanica.com
:-)