El post que buscas se encuentra eliminado, pero este también te puede interesar

Diseño y procesamiento mecanico

Anuncios

DISEÑO Y PROCESAMIENTO MECANICO 6TO 4TA MARTIN MAZZUCA 2014
HERRAMIENTAS DE CORTE

Una herramienta de corte es el elemento utilizado para extraer material de una pieza cuando se quiere llevar a cabo un proceso de mecanizado. Hay muchos tipos para cada máquina, pero todas se basan en un proceso de arranque de viruta. Es decir, al haber una elevada diferencia de velocidades entre la herramienta y la pieza, al entrar en contacto la arista de corte con la pieza, se arranca el material y se desprende la viruta.

Hay diferentes tipos de herramientas de corte, en función de su uso. Las podríamos clasificar en dos categorías: herramienta hecha de un único material (generalmente acero), y herramienta con plaquetas de corte industrial. La principal diferencia es que la punta de las segundas está hecha de otro material con mejores propiedades (como acero al carbono). Esta punta puede ir soldada o atornillada. Las herramientas con la punta de otro material, son más duras, lo que permite que corten materiales más duros, a más altas temperaturas y más altas velocidades, sin incrementar demasiado el coste de la herramienta.

Las plaquetas también se pueden fijar a la herramienta por medio de un tornillo. Están hechas de diferentes materiales duros como el acero al carbono o cerámicas, de forma que aguanten elevadas temperaturas. Tienen la ventaja de que cuanto la arista de corte se desgasta, se puede sacar el tornillo, girar la plaqueta por una cara nueva y volverla a utilizar. Finalmente cuando todas las caras se desgastan, se puede poner una nueva plaqueta sin tener que cambiar la herramienta. Esta es una manera económica de tener las herramientas con aristas siempre afilado

Movimientos de la herramienta
Para mecanizar una pieza existe dos posibilidades: que la pieza este quieta y la que se mueva sea la herramienta como es el caso de la fresa, o que la herramienta permanezca quieta y la que se mueva sea la pieza como en el caso del torno. Esto condiciona la geometría de la herramienta.

Geometría del corte
La forma básica de la herramienta de corte es una cuña, con dos superficies planas que delimitan un ángulo diedro. La forma principal de ataque es con la arista común paralela a la pieza. La arista común es la arista de corte principal o filo. Es la línea donde se produce el corte principal de la pieza en cuanto hay un avance longitudinal, es decir frontal a la pieza. La superficie de incidencia principal es la cara de la cuña que queda frente a la superficie trabajada de la pieza en corte frontal. La superficie de desprendimiento o de ataque es la otra cara de la cuña, por donde la viruta que se forma al producirse el corte se desprende de la pieza. Generalmente la viruta desliza por esta superficie antes de desprenderse. Cuando se produce un avance transversal el contacto se genera en el lateral de la pieza de corte con lo que tenemos la arista de corte secundaria o contrafilo: Es la arista por donde se corta cuando hay un avance transversal y la superficie de incidencia secundaria, la cara que avanza perpendicularmente con el avance transversal.

La geometría de las herramientas de corte se puede describir por medio de diferentes ángulos: Si consideramos la normal y la tangente a la pieza obtenemos un ángulo recto. Dentro de este ángulo esta herramienta. El ángulo de la cuña ,herramienta , recibe el nombre de ángulo de filo o de hoja, y se denota por β. El ángulo que queda entre la superficie de incidencia principal y la tangente a la pieza recibe el nombre de ángulo de incidencia y se denota por α. Y el ángulo de queda entre la superficie de desprendimiento recibe el nombre de ángulo de desprendimiento o de ataque y se denota por γ. Este último puede ser negativo, lo que significa que la superficie de desprendimiento va más allá de la normal y se mide hacia es otro lado. Con esta convención la suma de los tres es siempre 90º.

La herramienta debe elegirse de acuerdo con el material a mecanizar, con una geometría de corte específico que forme una cuña de corte apropiada. Esto asegura, junto con la correcta velocidad de corte el flujo óptimo de viruta y por lo tanto el mecanizado rentable de la pieza de trabajo con la calidad óptima, o requerida, de la superficie.

Materiales
Para una buena herramienta de corte, los materiales que la forman deben tener las siguientes características:

Dureza - Debe tener mucha dureza para aguantar la elevada temperatura y fuerza de fricción cuanto está en contacto con la pieza.
Resiliencia - Debe tener resiliencia para que las herramientas no se agrieten o se fracturen.
Resistencia al desgaste - Debe tener una duración aceptable, debido a los costos de producción y evitar un recambio de piezas .
Seguidamente se describen diferentes materiales utilizado para fabricar herramientas de corte o plaquetas:

MATERIALES DE LAS HERRAMIENTAS Y PROPIEDADES
ACERO NO ALEADO Es un acero con entre 0,5 a 1,5% de concentración de carbono. Para temperaturas de unos 250 º C pierde su dureza, por lo tanto es inapropiado para grandes velocidades de corte y no se utiliza, salvo casos excepcionales, para la fabricación de herramientas de turno. Estos aceros se denominan usualmente aceros al carbono o aceros para hacer herramientas (WS).
ACERO ALEADO Contiene como elementos aleatorios, además del carbono, adiciones de wolframio, cromo, vanadio, molibdeno y otros. Hay aceros débilmente aleado y aceros fuertemente aleado. El acero rápido (SS) es un acero fuertemente aleado. Tiene una elevada resistencia al desgaste. No pierde la dureza hasta llegar a los 600 º C. Esta resistencia en caliente, que es debida sobre todo al alto contenido de volframio, hace posible el torneado con velocidades de corte elevadas. Como el acero rápido es un material caro, la herramienta usualmente sólo lleva la parte cortante hecha de este material. La parte cortante o placa van soldadas a un mango de acero de las máquinas.
METAL DURO Los metales duros hacen posible un gran aumento de la capacidad de corte de la herramienta. Los componentes principales de un metal duro son el volframio y el molibdeno, además del cobalto y el carbono. El metal duro es caro y se suelda en forma de plaquetas normalizadas sobre los mangos de la herramienta que pueden ser de acero barato. Con temperaturas de corte de 900 º aunque tienen buenas propiedades de corte y se puede trabajar a grandes velocidades. Con ello se reduce el tiempo de trabajo y además la gran velocidad de corte ayuda a que la pieza con la que se trabaja resulte lisa. Es necesario escoger siempre para el trabajo de los diferentes materiales la clase de metal duro que sea más adecuada.

CERAMICOS: Estable. Moderadamente barato. Químicamente inerte, muy resistente al calor y se fijan convenientemente en soportes adecuados. Las cerámicas son generalmente deseable en aplicaciones de alta velocidad, el único inconveniente es su alta fragilidad. Las cerámicas se consideran impredecibles en condiciones desfavorables. Los materiales cerámicos más comunes se basan en alúmina (óxido de aluminio), nitruro de silicio y carburo de silicio. Se utiliza casi exclusivamente en plaquetas de corte. Con dureza de hasta aproximadamente 93 HRC. Se deben evitar los bordes afilados de corte y ángulos de desprendimiento positivo.

CERMET : Estable. Moderadamente caro. Otro material cementado basado en carburo de titanio (TiC). El aglutinante es usualmente níquel. Proporciona una mayor resistencia a la abrasión en comparación con carburo de tungsteno, a expensas de alguna resistencia. También es mucho más químicamente inerte de lo que. Altísima resistencia a la abrasión. Se utiliza principalmente en en convertir los bits de la herramienta, aunque se está investigando en la producción de otras herramientas de corte. Dureza de hasta aproximadamente 93 HRC. No se recomiendan los bordes afilados generalmente.

DIAMANTE: Estable. Muy Caro. La sustancia más dura conocida hasta la fecha. Superior resistencia a la abrasión, pero también alta afinidad química con el hierro que da como resultado no ser apropiado para el mecanizado de acero. Se utiliza en materiales abrasivos usaría cualquier otra cosa. Extremadamente frágil. Se utiliza casi exclusivamente en convertir los bits de la herramienta, aunque puede ser usado como un revestimiento sobre muchos tipos de herramientas. Se utilizan sobre todo para trabajos muy finos en máquinas especiales. Los bordes afilados generalmente no se recomiendan. El diamante es muy duro y no se desgasta.



ROSCADO
Sirve para crear barras roscadas. El mecanismo que mueve la herramienta, se acopla a una barra de roscar. Esto permite que la velocidad longitudinal de la herramienta y la angular de la pieza queden fijadas en una cierta relación, de forma que se podrá crear una rosca. La herramienta debe salir con la misma relación que ha entrado ya que sino se destruiría la rosca.Diseño y procesamiento mecanico


2) BROCAS
La broca es una pieza metálica de corte que crea orificios en diversos materiales cuando se coloca en una herramienta mecánica como taladro, berbiquí u otra máquina. Su función es formar un orificio o cavidad cilíndrica.

Para elegir la broca adecuada al trabajo se debe considerar la velocidad a la que se debe extraer el material y la dureza del mismo. La broca se desgasta con el uso y puede perder su filo, siendo necesario un reafilado, para lo cual pueden emplearse máquinas afiladoras, utilizadas en la industria del mecanizado. También es posible afilar brocas a mano mediante pequeñas amoladoras, con muelas de grano fino.

TIPOS DE BROCAS
Dependiendo de su aplicación, las brocas tienen diferente geometría. Entre muchos tipos de brocas podemos citar:

Brocas normales helicoidales: Generalmente se sujetan mediante portabrocas. Existen numerosas variedades que se diferencian en su material constitutivo y tipo de material a taladrar.
Broca metal alta velocidad: Para perforar metales diversos, fabricadas en acero de larga duración; las medidas más usuales son:
1/16 5/64 3/32 7/64 1/8 9/64 5/32 11/64 3/16 13/64 7/32 15/32 1/4 5/16 y 3/8

Brocas para perforar concreto: Brocas para perforar concretos y materiales pétreos regularmente fabricadas en acero al cromo con puntas de carburo de tungsteno algunas de valor más elevado tienen zancos reducidos para facilitar introducirlas en taladros más pequeños y para evitar los giros cuentan con el mismo zanco en forma de triángulo denominado p3 antiderrapante y acabados color cobalto; las medidas más comunes son:
3/16*6 1/4*4 1/4*6 1/4*12 5/16*4 5/16*6 5/16*12 3/8*5 3/8*6 3/8*12 1/2*6 1/2*12

Brocas para perforar piezas cerámicas y vidrio: Fabricadas en carburo de tungsteno para facilitar la perforación de piezas cerámicas y vidrio, y carentes de la hélice ya que solo es el diamante montado sobre el zanco; las medidas más comunes son:
1/8 3/16 1/4 5/16 3/8 1/2

Broca larga: Se utiliza para taladrar los interiores de piezas o equipos, tarea que sería imposible con una broca normal.
Broca super larga: Empleada para taladrar los muros de viviendas a fin de introducir cables, por ejemplo.


Brocas de centrar.
Broca de centrar: Broca de diseño especial empleada para realizar los puntos de centrado de un eje para facilitar su torneado o rectificado.
Broca para berbiquí: Usadas En carpintería de madera, por ser de muy bajas revoluciones. Las hay de diferentes diámetros.
Broca de paleta: Usada principalmente para madera, para abrir muy rápidamente agujeros con berbiquí, taladro o barreno eléctrico. También se le ha conocido como broca de espada planas o de manita.
Broca de taladrado profundo o "de escopeta": También conocida como broca cañón.


Broca de excavación.
Broca para excavación o Trépano: Utilizada para la perforación de pozos petrolíferos y sondeos.
Brocas para máquinas de control numérico: Son brocas especiales de gran rendimiento y precisión que se emplean en máquinas de control numérico, que operan a altas velocidades de corte.

BROCA Es la primera herramienta a utilizar cuando se quiere hacer un agujero. Tiene dos hojas de corte en la punta y una ranura helicoidal para evacuar la viruta. Tiene una precisión baja, con IT 9-10. Si se quiere hacer un agujero preciso lo que hay que hacer es escoger una broca de menor diámetro que el deseado y luego refinarlo con la broca mandril y el escariador.5
Broca.JPG Fresas

BROCA MANDRI Esta herramienta sirve para ensanchar agujeros. Su extremo no es tanto puntiagudo como la broca ya que el agujero ya está previamente hecho y lo que hace es sacar material de los laterales. Generalmente incrementa el diámetro del agujero en 3 ó 4 milímetros. Con ello se obtiene una calidad de IT 8-9, si se quiere refinar más ha de pasar el escariador.6
Broca mandril.JPG

ESCARIADOR Es el paso final para obtener un agujero preciso. Después de hacer el agujero con la broca y ensanchar-con la broca mandril, con el escariador se incrementa el diámetro del agujero en 3 o 4 décimas de milímetro, consiguiendo así calidades de IT 6-7.7

En la fresa la que gira es la herramienta y la pieza permanece quieta o realiza un movimiento hacia la herramienta.


FRESA FRONTAL Tiene aristas cortantes por los laterales y en la punta. Esto permite que pueda ser utilizada para múltiples aplicaciones. Es posible hacer ranuras, agujeros, allanar superficies laterales y frontales. El número de puntas es variable, generalmente son de 2 o 4 puntas, y en cuanto es necesaria más precisión pueden haber 6. También hay otro tipo, en que sólo hay aristas laterales pero no en la punta, que se llama fresa cilíndrica. Brocas


PLATO DE PLANEAR Sirve para crear una superficie plana sobre la pieza. El plato de planear se coloca a poca profundidad de una cara prácticamente lisa, y lo que se obtiene es la cara perfectamente lisa.


FORMA DE T (del tipo Woodruff) Sirve para hacer ranuras de la anchura de la herramienta. La herramienta gira sobre sí misma, mientras que la pieza avanza linealmente, de esta forma la ranura que queda tiene el perfil de la herramienta1


ALA DE MOSCA Esta herramienta sirve para hacer formas triángulares, tal como se puede ver con el perfil de la herramienta..


DISCO DE SIERRA Permite hacer cortes estrechos. Las puntas de la sierra radial son muy finas, por lo tanto las velocidades de corte no pueden ser muy elevadas.

FRESA BICONICA De forma similar a la de cola de milano, permite hacer una forma triangular, la diferencia es que ésta hace el corte vertical mientras que la de cola de milano lo hace lateral.2


FRESA DE MODULO Sirve para tallar engranajes. Se van haciendo diferentes pasadas de forma que se van obteniendo las diferentes dientes del engranaje.3 4 Prácticamente en desuso en la actualidad se emplea la llamada fresa madre.
Fresa de

FRESA DE ACHAMAFLAR Esta herramienta se utiliza para hacer chaflanes en la pieza, es decir, convierte una arista viva en una cara con un determinado ángulo y anchura.

Anuncios

0 comentarios - Diseño y procesamiento mecanico