Compresores

Definición:
Un compresor es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos llamados compresibles, tal como lo son los gases y los vapores. Esto se realiza a través de un intercambio de energía entre la máquina y el fluido en el cual el trabajo ejercido por el compresor es transferido a la sustancia que pasa por él convirtiéndose en energía de flujo, aumentando su presión y energía cinética impulsándola a fluir.

Al igual que las bombas, los compresores también desplazan fluidos, pero a diferencia de las primeras que son máquinas hidráulicas, éstos son máquinas térmicas, ya que su fluido de trabajo es compresible, sufre un cambio apreciable de densidad y, generalmente, también de temperatura; a diferencia de los ventiladores y los sopladores, los cuales impulsan fluidos compresibles, pero no aumentan su presión, densidad o temperatura de manera considerable.

Compresores

Utilizacion de compresores:

UtilizaciónLos compresores son ampliamente utilizados en la actualidad en campos de la ingeniería y hacen posible nuestro modo de vida por razones como:

Son parte importantísima de muchos sistemas de refrigeración y se encuentran en cada refrigerador casero, y en infinidad de sistemas de aire acondicionado.
Se encuentran en sistemas de generación de energía eléctrica, tal como lo es el Ciclo Brayton.
Se encuentran en el interior muchos "motores de avión", como lo son los turborreactores y hacen posible su funcionamiento.
se pueden comprimir gases para la red de alimentación de sistemas neumáticos, los cuales mueven fábricas completas.
Clasificación según el método de intercambio de energía:

Sistema Pendular Taurozzi
Reciprocantes o Alternativos: utilizan pistones (sistema bloque-cilindro-émbolo como los motores de combustión interna). Abren y cierran válvulas que con el movimiento del pistón aspira/comprime el gas. Es el compresor más utilizado en potencias pequeñas. Pueden ser del tipo herméticos, semi-hermeticos o abiertos. Los de uso domestico son hermeticos, y no pueden ser intervenidos para repararlos. los de mayor capacidad son semi-hermeticos o abietos, que se pueden desarmar y reparar.
de Espiral (Orbital, Scroll)
Rotativo-Helicoidal (Tornillo, Screw): la compresión del gas se hace de manera continua, haciéndolo pasar a través de dos tornillos giratorios. Son de mayor rendimiento y con una regulación de potencia sencilla, pero su mayor complejidad mecánica y costo hace que se emplee principalmente en elevadas potencias, solamente.
Rotodinámicos o Turbomáquinas: Utilizan un rodete con palas o álabes para impulsar y comprimir al fluido de trabajo. A su vez éstos se clasifican en:
Axiales
Radiales

Tipos de compresores:

Tipos de compresores Según las exigencias referentes a la presión de trabajo y al caudal de suministro, se pueden emplear diversos tipos de construcción. Se distinguen dos tipos básicos de compresores: El primero trabaja según el principio de desplazamiento. La compresión se obtiene por la admisión del aire en un recinto hermético, donde se reduce luego el volumen. Se utiliza en el compresor de émbolo (oscilante o rotativo). El otro trabaja según el principio de la dinámica de los fluidos. El aire es aspirado por un lado y comprimido como consecuencia de la aceleración de la masa (turbina). Compresores de émbolo Compresor de émbolo oscilante . Este es el tipo de compresor más difundido actualmente. Es apropiado para comprimir a baja, media o alta presión. Compresor de émbolo oscilante Para obtener el aire a presiones elevadas, es necesario disponer varias etapas compresoras. El aire aspirado se somete a una compresión previa por el primer émbolo, seguidamente se refrigera, para luego ser comprimido por el siguiente émbolo. El volumen de la segunda cámara de compresión es, en conformidad con la relación, más pequeño. Durante el trabajo de compresión se forma una cantidad de calor, que tiene que ser evacuada por el sistema refrigeración. Los compresores de émbolo oscilante pueden refrigerarse por aire o por agua, y según las prescripciones de trabajo las etapas que se precisan son: Para los caudales véase la figura 14 diagrama. Compresor de émbolo rotativo Consiste en un émbolo que está animado de un movimiento rotatorio. El aire es comprimido por la continua reducción del volumen en un recinto hermético. Compresor rotativo multicelular Un rotor excéntrico gira en el interior de un cárter cilíndrico provisto de ranuras de entrada y de salida. Las ventajas de este compresor residen en sus dimensiones reducidas, su funcionamiento silencioso y su caudal prácticamente uniforme y sin sacudidas. Para el caudal véase la figura 14 (diagrama). El rotor está provisto de un cierto número de aletas que se deslizan en el interior de las ranuras y forman las células con la pared del cárter. Cuando el rotor gira, las aletas son oprimidas por la fuerza centrífuga contra la pared del cárter, y debido a la excentricidad el volumen de las células varía constantemente. Compresor de tornillo helicoidal, de dos ejes: Dos tornillos helicoidales que engranan con sus perfiles cóncavo y convexo impulsan hacia el otro lado el aire aspirado axialmente. En estos compresores, el aire es llevado de un lado a otro sin que el volumen sea modificado. En el lado de impulsión, la estanqueidad se asegura mediante los bordes de los émbolos rotativos. Compresor Roots Turbocompresores Trabajan según el principio de la dinámica de los fluidos, y son muy apropiados para grandes caudales. Se fabrican de tipo axial y radial. Aceleración progresiva de cámara a cámara en sentido radial hacia afuera; el aire en circulación regresa de nuevo al eje. Desde aquí se vuelve a acelerar hacia afuera. Elección del compresor Caudal Por caudal entiendo la cantidad de aire que suministra el compresor. Existen dos conceptos. El caudal teórico y El caudal efectivo o real En el compresor de émbolo oscilante, el caudal teórico es igual al producto de cilindrada * velocidad de rotación. El caudal efectivo depende de la construcción del compresor y de la presión. En este caso, el rendimiento volumétrico es muy importante. Es interesante conocer el caudal efectivo del compresor. Sólo éste es el que acciona y regula los equipos neumáticos. Los valores indicados según las normas ?representan valores efectivos (p. ej.: DIN 1945). El caudal se expresa en m3/min ó m3/h . No obstante, son numerosos los fabricantes que solamente indican el caudal teórico Presión También se distinguen dos conceptos: La presión de servicio es la suministrada por el compresor o acumulador y existe en las tuberías que alimentan a los consumidores. La presión de trabajo es la necesaria en el puesto de trabajo considerado.

Materiales


Turbocompresores.

Un turbocompresor es un sistema de sobrealimentación que usa una turbina centrífuga para accionar mediante un eje coaxial con ella, un compresor centrífugo para comprimir gases. Este tipo de sistemas se suele utilizar en motores de combustión interna alternativos, especialmente en los motores diésel. En algunos países, la carga impositiva sobre los automóviles depende de la cilindrada del motor. Como un motor con turbocompresor tiene una mayor potencia máxima para una cilindrada dada, estos modelos pagan menos impuestos que los que no tienen turbocompresor.
FuncionamientoEn los motores sobrealimentados mediante este sistema, el turbocompresor consiste en una turbina accionada por los gases de escape del motor de explosión, en cuyo eje se fija solidariamente un compresor centrífugo que toma el aire a presión atmosférica después de pasar por el filtro de aire y luego lo comprime para introducirlo en los cilindros a mayor presión que la atmosférica.

Los gases de escape inciden radialmente en la turbina, saliendo axialmente, después de ceder gran parte de su energía interna (mecánica + térmica) a la misma.

El aire entra al compresor axialmente, saliendo radialmente, con el efecto secundario negativo de un aumento de la temperatura más o menos considerable. Este efecto se contrarresta en gran medida con el intercooler.

Este aumento de la presión consigue introducir en el cilindro una mayor cantidad de oxígeno (masa) que la masa normal que el cilindro aspiraría a presión atmosférica, obteniéndose más par motor en cada carrera útil (carrera de expansión) y por lo tanto más potencia que un motor atmosférico de cilindrada equivalente, y con un incremento de consumo proporcional al aumento de masa de aire en el motor de gasolina. En los diésel la masa de aire no es proporcional al caudal de combustible, siempre entra aire en exceso al carecer de mariposa, por ello es en este tipo de motores en donde se ha encontrado su máxima aplicación (motor turbodiesel).

Los turbocompresores más pequeños y de presión de soplado más baja ejercen una presión máxima de 0,25 bar (3,625 psi), mientras que los más grandes alcanzan los 1,5 bar (21,75 psi). En motores de competición se llega a presiones de 3 y 8 bares dependiendo de si el motor es gasolina o diésel.

Como la energía utilizada para comprimir el aire de admisión proviene de los gases de escape, que se desecharía en un motor atmosférico, no resta potencia al motor cuando el turbocompresor está trabajando, tampoco provoca pérdidas fuera del rango de trabajo del turbo, a diferencia de otros, como los sistemas con compresor mecánico (sistemas en los que el compresor es accionado por una polea conectada al cigüeñal).
Regulación del turbocompresorEn muchos casos, y según el tamaño del turbo, con objeto de limitar el exceso de presión cuando la turbina trabaja a máximas revoluciones (por ejemplo subiendo una cuesta prolongada con el acelerador a tope) existe un dispositivo mecánico de regulación, una válvula de descarga (Waste-gate) que desvía mediante una derivación o Bypass parte o todo de los gases, limitando de esta manera el régimen de la turbina y por tanto del compresor.
tipo

a.Limpieza interior de aceites y carbonillas.
b.Válvulas de seguridad: comprobación de su status como dispositivo de control apto para este tipo de funciones. En caso de que sea necesaria su sustitución será posible exigir al instalador que efectúe el cambio que facilite una copia del certificado acreditativo del fabricante del dispositivo donde se especifique la capacidad de descarga de la válvula. En caso de que sea necesaria su sustitución sólo se empleará válvulas nuevas que llevarán o bien grabado o bien en una placa los siguientes datos: fabricante, diámetro nominal, presión nominal, presión de tarado y caudal nominal. Las válvulas sustituidas serán precintadas a la presión de tarado.

c.Manómetros: ser comprobará su buen estado y funcionamiento. Así mismo se comprobará que los manómetros existentes sean de clase 2.5 según el Reglamento de Aparatos a Presión. Si un manómetro necesita ser sustituido, sólo lo será por otro nuevo, de clase 2.5, según el citado Reglamento. Una vez sustituido se comprobará su correcto funcionamiento.

d.Dispositivos de inspección y limpieza: se comprobará la accesibilidad a los orificios y registros de limpieza. En el caso de los purgadores, se comprobará su operatividad. Así mismo se comprobará el funcionamiento de los dispositivos de refrigeración y captación de aceite del aire alimentado.

e.Engrase: el aceite que se emplee estará libre de materias resinificables. Se utilizará aceite de propiedades antioxidantes con punto de inflamación superior a 125ºC. Cuando la presión de trabajo sobrepase los 20 Kg/cm2, sólo deberán utilizarse aceites con punto de inflamación superior a 220ºC.
calor
Sobrepeso
Mantenimiento del Compresor:

Mantenimiento básico de la fuente de aire que va a nuestro aerógrafo

--------------------------------------------------------------------

Un detalle que debes cuidar permanentemente, es el agua en el filtro y en el depósito de aire del compresor.
--¿Qué sucede?
-- El tanque de aire junta agua debido a la condensación por la diferencia de temperaturas entre el ambiente y el tanque. Esta agua producto de la condensación debería quedarse en el filtro de agua, pero este, al saturarse la deja pasar en forma de pequeñas gotas que se mezclarán con la pintura justo en la salida de la boquilla.
Esta mezcla de aire + agua + pintura es especialmente problemática.
---Si estas usando lacas nitrocelulosicas (como las de los autos) la pintura se corta y hace grumo, pasta en la aguja e interior de los conductos del aerógrafo.
---Si estas usando tintas acrílicos el agua diluye la tinta y se produce un aguado o una salida indeseable y totalmente impropia con altísimas probabilidades de arruinar el trabajo.
En cualquier caso la salida de agua por la boquilla causa daños y contratiempos casi siempre graves.

------------------------------

EL COMPRESOR (TIPOS)

-----------------------------

Si tu compresor es con pistón seguro lleva aceite. También es altamente probable que la máquina tenga un medidor del nivel del aceite en su interios. A veces eun "ojo" de vidrio transparente donde se puede ver claramente el aceite dentro del él (si es que hay). Otras veces es una varilla metálica que debes quitar y ver que el aceite llega a la medida que indica debe estar. (la varilla tiene marcas de mínimo y máximo).
NUNCA cuando cambies el aceite o agregues, coloques más aceite del que dice la marcas debe haber. Si por alguna razón falta aceite a menudo es porque algo anda mal (a veces se evapora un poquito) y debes completar el nivel requerido, pues nunca eches más allá del nivel que el fabricante dispuso pra el equipo.
El aceite se debe cambiar cada tanto tiempo. Dependiendo de la cantidad de horas de trabajo continuadas e intermitentes, debes cambiar el aceite. Consulta a quien te lo vendió. (generalmente en trabajo comun el cambio es una o dos veces al año más o menos).
Este tipo de compresor tiene un lugar específico por donde aspira el aire y luego lo presiona en su depósito. Ese lugar de aspiración tiene un filtro (es notorio) que siempre está a la vista y con fácil acceso. Este filtro debe llimpiarse con regularidad (más o menos una vez al mes) dependiendo un poco si lo tienes en un lugar con mucho polvo o tu zona / barrio tiene calles que no están asfaltadas. O sea, por limpiarlo no pecas. ;-)
Para el mantenimiento del compresor a diafragma es necesario desarmarlo integro cada tanto porque normalmente esta demasiado cerca de el lugar donde se pinta (el compresor a piston puede estar a muchos metros de distancia del lugar donde se pinta). Esta ubicación cercana hace que el compresor aspire pintura y su motor eléctrico con el tiempo junte el polvo de las pinturas secas en el aire y en el piso que se ubicarán dentro de él produciendo calentamientos y baja de rendimiento notoria.
Otro es que el diafragma se seca, se agrieta y las perdida de potencia es también facil de sentir. El diafragma no se repara, se compra nuevo y se cambia por el viejo. La biela está apoyada sobre un eje que tiene un rulemán blindado. Cuando este tiene juego libre (desgaste) se debe cambiar por otro igualmente blindado. El motor eléctrico se apoya en dos puntos que suelen degastarse. En caso que el compresor sea demasiado "trucho" (ordinario#baja calidad) no tendrá rulemanes. Si es de buena o mediana calidad tendrá rulemanes que en caso de desgaste deben cambiarse por otros de igual caracteristicas.
Si no tiene rulemanes deberás ir con un tornero (o metalurgica) para que te fabrique los casquillos de bronce ajustrados al eje.
turbocompresores
COMPRESORES DE DESPLAZAMIENTO POSITIVO.



Los tipos de desplazamiento positivo son de dos categorías básicas: Reciprocantes y Rotatorias. El compresor reciprocante tienen uno o más cilindros en los cuales hay un pistón o embolo de movimiento alternativo que desplaza un volumen positivo en cada carrera. Los rotatorios incluyen los tipos de lóbulos, espiral, aspas o paletas y anillo de liquido. Cada uno con una carcasa, o con mas elementos rotatorios que se acoplan entre sí, como los lóbulos o las espirales, o desplazan un volumen fijo en cada rotación.
de compresore
COMPRESORES RECIPROCANTES O ALTERNATIVOS.



Los compresores reciprocantes abarcan desde una capacidad muy pequeña hasta unos 3000 PCMS. Para equipo de procesos, por lo general, no se utilizan mucho los tamaños grandes y se prefieren los centrífugos. Si hay alta presión y un gasto más bien bajo, se necesitan los reciprocantes. El número de etapas o cilindros se debe seleccionar con relación a las o temperaturas de descarga, tamaño disponible para los cilindros y carga en el cuerpo o biela del compresor.



Los tamaños más bien pequeños, hasta unos 100 hp, pueden tener cilindros de acción sencilla, enfriamiento con aire, y se pueden permitir que los valores de aceite en el deposito se mezclen con el aire o gas comprimidos. Estos tipos sólo son deseables en diseños especiales modificados.



Los tipos pequeños para procesos, de un cilindro y 25 o 200 hp, tienen enfriamiento por agua, pitón de doble acción, prensaestopas separado que permite fugas controladas y pueden ser del tipo no lubricado, en el cual el lubricante no toca el aire o gas comprimido. Se utilizan para aire para instrumentos o en aplicaciones pequeñas para gas de proceso.



Los compresores más grandes para aire o gas son de dos o más cilindros. En casi todas las instalaciones, los cilindros se disponen en forma horizontal y en serie de modo que presenten dos o más etapas de compresión
Compresores
COMPRESORES ROTATORIOS.

Los sopladores, bombas de vacío y compresores rotatorios son todos de desplazamiento positivo, en los cuales un elemento rotatorio desplaza un volumen fijo con cada revolución.

El más antiguo y conocido es el soplador de lóbulos, en el cual dos o tres rotores en forma de ·8· se acoplan entre sí y se impulsan con engranes de sincronización montados en cada eje. Los sopladores de lóbulos van desde muy pequeños, para compresores producidos en serie, desde unos 2ft3/min., hasta los más grandes, para unos 20000 PCMS. Se usan principalmente como sopladores de baja presión, que comprimen el aire o gases desde la presión atmosferica hasta 5 a 7 psig y, algunos hasta 25 psig, en tipos especiales. Tambien se utilizan mucho como bombas de vacío, que son en realidad compresores que funcionan con presiones de succión inferiores a la atmosférica y con presiones de descarga iguales a la atmosférica o un poco mayores.

El segundo estilo es el de aspas o paletas deslizantes, que tiene un rotor con ranuras, dentro de las cuales se deslizan las aspas hacia dentro y afuera en cada revolución. Las aspas atrapan el aire o gas y en forma gradual reducen su volumen y aumentan la presión, hasta que escapa por orificios en la carcasa. En las industrias de procesos químicos los tipos de lóbulos y de aspas tienen aplicación limitada porque producen presiones bajas y sólo se pueden obtener, en general con carcasa de hierro fundido, que los hacen inadecuados para ciertos gases corrosivos o peligrosos.

Un tercer tipo es el compresor de espiral rotatorio que se utilizan para altas presiones y vienen en tamaños grandes. Están disponibles en estructuras enfriadas por aceite y secas. Sus capacidades van desde unos 50 hasta 3500 PCMS en el tipo inundado por aceite, y de 1000 a 20000 PCMS en los de tipo seco, estos pueden funcionar a velocidades de 10000 a 12000 rpm y con presiones de descarga de 200 a 400 psig, o sea un aumento de 50 psig por carcasa.
Materiales
Los compresores alternativos de embolo se clasifican:
Según la fase de compresión en
Monofásico o de simple efecto, cuando el pistón realiza una sola fase de compresión (la acción de compresión la ejecuta una sola cara del pistón).
Bifásico, de doble efecto o reciprocante cuando el pistón realiza doble compresión (la acción de compresión la realizan ambas caras del pistón).
Según las etapas de compresión se clasifican en:
Compresores de una etapa cuando el compresor realiza el proceso de compresión en una sola etapa.
Compresores de varias etapas cuando el proceso de compresión se realiza en mas de una etapa por ejemplo una etapa de baja presión y una etapa de alta presión.
Según la disposición de los cilindros se clasifican en:
Verticales -Horizontales
Los compresores alternativos abarcan desde una capacidad muy pequeña hasta unos 3.000 PCMS. Para equipo de procesos, por lo general, no se utilizan mucho los tamaños grandes y se prefieren los centrífugos. Si hay alta presión y un gasto más bien bajo, se necesitan los alternativos. El número de etapas o cilindros se debe seleccionar con relación a las temperaturas de descarga, tamaño disponible para los cilindros y carga en el cuerpo o biela del compresor.
Los tamaños más bien pequeños, hasta de unos 100 HP, pueden tener cilindros de acción sencilla, enfriamiento con aire, y se puede permitir que los vapores del aceite en el depósito (cárter) se mezclen con el aire o gas comprimidos. Estos tipos sólo son deseables en diseños especiales modificados.
Los tipos pequeños para procesos, de un cilindro y 25 o 200 HP, tienen enfriamiento por agua, pistón de doble acción, prensaestopas separado que permite fugas controladas y pueden ser de¡ tipo no lubricado, en el cual el lubricante no toca el aire o gas comprimido. Se utilizan para aire para instrumentos o en aplicaciones pequeñas para gas de proceso. Los compresores más grandes para aire o gas son de dos o más cilindros. En casi todas las instalaciones, los cilindros se disponen en forma horizontal y en serie, de modo que presenten dos o más etapas de compresión.
tipo

COMPRESORES ROTATIVOS O CENTRÍFUGOS

Los compresores centrífugos impulsan y comprimen los gases mediante ruedas de paletas.
Los ventiladores son compresores centrífugos de baja presión con una rueda de paletas de poca velocidad periférica (de 10 a 500 mm de columna de agua; tipos especiales hasta 1000 mm). Las máquinas soplantes rotativas son compresores centrífugos de gran velocidad tangencial (120 a 300 m/seg.) y una relación de presiones por escalón p2/p1 = 1,1 a 1,7. Montando en serie hasta 12 ó 13 rotores en una caja puede alcanzarse una presión final de » 12kg/cm2, comprimiendo aire con refrigeración repetida.
Compresores de paletas deslizantes
Este tipo de compresores consiste basicamente de una cavidad cilindrica dentro de la cual esta ubicado en forma excentrica un rotor con ranuras profundas, unas paletas rectangulares se deslizan libremente dentro de las ranuras de forma que al girar el rotor la fuerza centrifuga empuja las paletas contra la pared del cilindro. El gas al entrar, es atrapado en los espacios que forman las paletas y la pared de la cavidad cilindrica es comprimidad al disminuir el volumen de estos espacios durante la rotacion.
calor

INSTALACIONES AUXILIARES

Refrigeradores del Gas (para enfriar el gas después de cada escalón)
Con presiones bajas se emplea preferentemente el refrigerador de haz tubular, en el que circula el gas por fuera de los tubos y el agua por dentro de los mismos, o el refrigerador con elementos de tubos de aletas.
En los refrigeradores de haz tubular se dan al gas varios cambios de dirección mediante unos mamparos en laberinto para que la velocidad del gas sea la conveniente a la buena transmisión del calor. En los refrigeradores de elementos no existe laberinto, por lo cual ocasiona menos pérdidas de carga. Otras ventajas del refrigerador de elementos: poco espacio ocupado por los tubos de aletas, lo que permite disponer grandes espacios de amortiguamiento y de condensación de en la caja del refrigerador, y facilidad de limpieza por la sencillez de desmontaje de los elementos refrigeradores.
REFRIGERADORES DE GAS

Gasto del compresor en la aspiración m3/min
La cantidad de calor Q [kcal/h] eliminada en cada escalón se obtiene aproximadamente, de la potencia del escalón Ni[HP] y de la cantidad de vapor de agua condensado en el refrigerador Gw (Kg.), por la fórmula
Q=632 Ni + 600 Gw.
De Q y de la elevación de temperatura admitida en el agua de refrigeración se obtiene la cantidad necesaria de esta última. La temperatura de salida del agua no debe pasar de 40° para evitar la formación de incrustaciones. Velocidad del agua 1,5 a 2 m/seg.; velocidad del gas 5 a 15 m/seg.
A la resistencia al paso del calor 1/k por superficies limpias hay que añadir, por la suciedad inevitable de 0,0005 a 0,001 m2h° /kcal por cada cara en contacto con agua o gas, o más si se trabaja en condiciones desfavorables.
Filtros de polvo
Acumulador de aire a presión. Compensa las pulsaciones del compresor y también, como indica su nombre, actúa como acumulador. Su capacidad será holgada para evitar un trabajo excesivo del regulador y conseguir un buen efecto separador del agua y del aceite.
Sobrepeso
Compresores de hélice

Los compresores de hélice se usan para la manipulación de grandes volúmenes de gases a relativas bajas presiones siendo máquinas que hacen el trabajo contrario de las turbinas. Una aplicación típica de un compresor de hélice se encuentra en los sobrecargadores de los motores de combustión interna.
El presenta trabajo tiene como objetivo principal tratar sobre la información básica que de la asignatura Máquinas Térmicas e Hidráulicas requiere como objetivo principal de este tema.

La investigación fue bibliográfica aún cuando el material ha sido de difícil obtención, sin embargo se han tratado de abarcar los aspectos más resaltantes referentes al uso e importancia que tiene el turbocompresor en el proceso de admisión de los motores de combustión interna.

Cuanto más aire y combustible seamos capaces de introducir en los cilindros del motor, mayor será la potencia que se podrá obtener, pero mayor será la masa de aire necesaria para quemarlo; de esta necesidad surge la idea de los motores sobrealimentados. La carga fresca entra al cilindro a una presión muchísimo mayor a la presión de entrada del compresor, y por tanto la temperatura de entrada será igualmente alta.

La sobrealimentación consiste en establecer a la entrada de los cilindros del motor una atmósfera de aire con una densidad superior a la normal de forma que para un mismo volumen de aire, la masa de ese aire es mayor; para ello se utilizan una serie de accesorios que serán diferentes según el tipo de sobrealimentador que se utilice.

El turbocompresor o turboalimentador es básicamente un compresor accionado por los gases de escape, cuya misión fundamental es presionar el aire de admisión, para de este modo incrementar la cantidad que entra en los cilindros del motor en la carrera de admisión, permitiendo que se queme eficazmente más cantidad de combustible. De este modo, el par motor y la potencia final pueden incrementarse hasta un 35%, gracias a la acción del turbocompresor.

Este dispositivo ha sido proyectado para aumentar la eficiencia total del motor. La energía para el accionamiento del turbocompresor se extrae de la energía desperdiciada en el gas de escape del motor, está compuesto de una rueda de turbina y eje, una rueda de compresor, un alojamiento central que sirve para sostener el conjunto rotatorio, cojinetes, un alojamiento de turbina y un alojamiento de compresor.

La rueda de turbina está situada en el alojamiento de turbina y está montada en un extremo del eje de turbina. La rueda del compresor está situada en el alojamiento dcl compresor y está montada en el extremo opuesto del eje de la rueda de turbina para formar un conjunto integral rotatorio.

El conjunto rotatorio se compone de una rueda de turbina y eje formando conjunto, un aro de pistón, un espaciador de empuje, rueda de compresor y tuerca de retención de rueda. El conjunto rotatorio se apoya sobre dos cojinetes lubricados a presión mantenidos en el alojamiento central por aros de resorte. Conductos internos de aceite están perforados en el alojamiento central para proveer lubricación a los cojinetes de eje de rueda de turbina, la arandela de empuje, collarín de empuje y espaciador de empuje.
turbocompresores

COMPRESORES DE TORNILLO


El estudio del primer compresor rotativo de tornillo, lo realiza en 1934 el profesor Alf Lysholm .El principio de funcionamiento de este compresor está esquematizado en la figura 6-15.

Lo que esencialmente constituye el compresor de tornillo, es un par de rotores que tienen lóbulos helicoidales de engranaje constante. Los rotores van montados en un cárter de hierro fundido provisto de una admisión para aire en un extremo y una salida en el otro. El tornillo macho tiene normalmente cuatro lóbulos y el hembra seis. El tornillo macho ha girado 1/4, el hembra 1/6 de revoluciones, en cada una de las figuras de] diagrama (Fig. 6-15) . Según giran los rotores , los espacios que hay entre los lóbulos van siendo ofrecidos al orificio de admisión y el incremento de volumen experimentado provoca un descenso de presión, con lo que dichos espacios empiezan a llenarse de aire (A). Al mismo tiempo se inyecta aceite sometido a presión neumática en el aire entrante; no hay bomba de aceite.

Cuando los espacios interlobulares están completamente cargados de aire, la rotación , que prosigue, cierra el orificio de admisión y comienza la compresión (B) El volumen de aire que hay entre los rotores en engrane continuo sufre aún mayor reducción (E). Cuando se alcanza la presión final a que se somete el aire, el espacio interlobular queda conectado con el orificio de salida (D). la mezcla descargada de aire/aceite pasa por un separador que elimina las partículas de aceite. Entonces fluye el aire limpio por la tubería neumática
de compresore
web grafia

http://es.wikipedia.org/wiki/Compresor_(m%C3%A1quina)
http://www.elprisma.com/apuntes/ingenieria_mecanica/compresores/
http://www.proyectosfindecarrera.com/tipos-compresores.htm
http://www.compair.es/About_Us/Compressed_Air_Explained--03The_three_types_of_compressors.aspx
http://www.monografias.com/trabajos23/bombas-y-compresores/bombas-y-compresores.shtml

Fuentes de Información - Compresores

Dar puntos
39 Puntos
Votos: 7 - T!score: 6/10
  • 1 Seguidores
  • 25.781 Visitas
  • 4 Favoritos

7 comentarios - Compresores

@papesatan Hace más de 3 años -8
Observaciones:
1.- No se emiten declaraciones propias del autor.
2.- No se indican las fuentes de consulta.
3.- La página no demuestra trabajo creativo (enlaces externos, videos, etc.)
@chamametalero Hace más de 2 años
papesatan dijo:Observaciones:
1.- No se emiten declaraciones propias del autor.
2.- No se indican las fuentes de consulta.
3.- La página no demuestra trabajo creativo (enlaces externos, videos, etc.)


salame, das verguenza ajena. Buscate una novia papesatan.
@cleto1625 Hace más de 2 años
esta muy bueno esto me gusta pero yo estaba buscando el compresor de membrana no consigo informacion de eso vos tenes? si me la conseguis te doy 5 puntos que es todo lo que puedo dar
Saludos!!!
@cristian2minutos Hace más de 2 años +1
tengo un compresor que uso para la extraccion de agua, mi problema es que me escupe el agua y la otra es que se recalienta la tuberia de compresor, porque pasa eso?Compresores
@sp_ilmercados Hace más de 11 meses
7zip.com
jaja, mentira, excelente resumen!
@higherlove02 Hace más de 6 meses
muy bueno