Un post explosivo(big bang)

Hola chicos buenas noches, hoy quise hacer este post super completo para ustedes, espero que sepan valorar, y bueno dejen cargar, y comenten al final del post. gracias.

Teoría del Big Bang

En cosmología física, la teoría del Big Bang o teoría de la gran explosión es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de una singularidad espaciotemporal. Técnicamente, este modelo se basa en una colección de soluciones de las ecuaciones de la relatividad general, llamados modelos de Friedmann- Lemaître - Robertson - Walker. El término "Big Bang" se utiliza tanto para referirse específicamente al momento en el que se inició la expansión observable del Universo (cuantificada en la ley de Hubble), como en un sentido más general para referirse al paradigma cosmológico que explica el origen y la evolución del mismo.

Un post explosivo(big bang)

Introducción
Imagen proporcionada por el telescopio Hubble del espacio lejano, cuando el universo era más caliente y más concentrado de acuerdo con la teoría del Big Bang.

Curiosamente, la expresión Big Bang proviene -a su pesar- del astrofísico inglés Fred Hoyle, uno de los detractores de esta teoría y, a su vez, uno de los principales defensores de la teoría del estado estacionario, quien en 1949, durante una intervención en la BBC dijo, para mofarse, que el modelo descrito era sólo un big bang (gran explosión). No obstante, hay que tener en cuenta que en el inicio del Universo ni hubo explosión ni fue grande, pues en rigor surgió de una «singularidad» infinitamente pequeña, seguida de la expansión del propio espacio.


universo

La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía y homogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del Universo antes o después en el tiempo.


planetas

Una consecuencia de todos los modelos de Big Bang es que, en el pasado, el Universo tenía una temperatura más alta y mayor densidad y, por tanto, las condiciones del Universo actual son muy diferentes de las condiciones del Universo pasado. A partir de este modelo, George Gamow en 1948 pudo predecir que debería de haber evidencias de un fenómeno que más tarde sería bautizado como radiación de fondo de microondas

creacion

Breve historia de su génesis y desarrollo

Para llegar al modelo del Big Bang, muchos científicos, con diversos estudios, han ido construyendo el camino que lleva a la génesis de esta explicación. Los trabajos de Alexander Friedman, del año 1922, y de Georges Lemaître, de 1927, utilizaron la teoría de la relatividad para demostrar que el universo estaba en movimiento constante. Poco después, en 1929, el astrónomo estadounidense Edwin Hubble (1889-1953) descubrió galaxias más allá de la Vía Láctea que se alejaban de nosotros, como si el Universo se expandiera constantemente. En 1948, el físico ruso nacionalizado estadounidense, George Gamow (1904-1968), planteó que el universo se creó a partir de una gran explosión (Big Bang). Recientemente, ingenios espaciales puestos en órbita (COBE) han conseguido "oír" los vestigios de esta gigantesca explosión primigenia.

Dependiendo de la cantidad de materia en el Universo, éste puede expandirse indefinidamente o frenar su expansión lentamente, hasta producirse una contracción universal. El fin de esa contracción se conoce con un término contrario al Big Bang: el Big Crunch o Gran Colapso. Si el Universo se encuentra en un punto crítico, puede mantenerse estable ad eternum.


big

La teoría del Big Bang se desarrolló a partir de observaciones y avances teóricos. Por medio de observaciones, en la década de 1910, el astrónomo estadounidense Vesto Slipher y, después de él, Carl Wilhelm Wirtz, de Estrasburgo, determinaron que la mayor parte de las nebulosas espirales se alejan de la Tierra; pero no llegaron a darse cuenta de las implicaciones cosmológicas de esta observación, ni tampoco del hecho de que las supuestas nebulosas eran en realidad galaxias exteriores a nuestra Vía Láctea.

Además, la teoría de Albert Einstein sobre la relatividad general (segunda década del siglo XX) no admite soluciones estáticas (es decir, el Universo debe estar en expansión o en contracción), resultado que él mismo consideró equivocado, y trató de corregirlo agregando la constante cosmológica. El primero en aplicar formalmente la relatividad a la cosmología, sin considerar la constante cosmológica, fue Alexander Friedman, cuyas ecuaciones describen el Universo Friedman-Lemaître-Robertson-Walker, que puede expandirse o contraerse.

Entre 1927 y 1930, el padre jesuita belga Georges Lemaître obtuvo independientemente las ecuaciones Friedman-Lemaître-Robertson-Walker y propuso, sobre la base de la recesión de las nebulosas espirales, que el Universo se inició con la explosión de un átomo primigenio, lo que más tarde se denominó
"Big Bang".

explocion

En 1929, Edwin Hubble realizó observaciones que sirvieron de fundamento para comprobar la teoría de Lemaître. Hubble probó que las nebulosas espirales son galaxias y midió sus distancias observando las estrellas variables cefeidas en galaxias distantes. Descubrió que las galaxias se alejan unas de otras a velocidades (relativas a la Tierra) directamente proporcionales a su distancia. Este hecho se conoce ahora como la ley de Hubble (véase Edwin Hubble: Marinero de las nebulosas, texto escrito por Edward Christianson).

Según el principio cosmológico, el alejamiento de las galaxias sugería que el Universo está en expansión. Esta idea originó dos hipótesis opuestas. La primera era la teoría Big Bang de Lemaître, apoyada y desarrollada por George Gamow. La segunda posibilidad era el modelo de la teoría del estado estacionario de Fred Hoyle, según la cual se genera nueva materia mientras las galaxias se alejan entre sí. En este modelo, el Universo es básicamente el mismo en un momento dado en el tiempo. Durante muchos años hubo un número de adeptos similar para cada teoría.

Con el pasar de los años, las evidencias observacionales apoyaron la idea de que el Universo evolucionó a partir de un estado denso y caliente. Desde el descubrimiento de la radiación de fondo de microondas, en 1965, ésta ha sido considerada la mejor teoría para explicar el origen y evolución del cosmos. Antes de finales de los años sesenta, muchos cosmólogos pensaban que la singularidad infinitamente densa del tiempo inicial en el modelo cosmológico de Friedman era una sobreidealización, y que el Universo se contraería antes de empezar a expandirse nuevamente. Ésta es la teoría de Richard Tolman de un Universo oscilante. En los años 1960, Stephen Hawking y otros demostraron que esta idea no era factible, y que la singularidad es un componente esencial de la gravedad de Einstein. Esto llevó a la mayoría de los cosmólogos a aceptar la teoría del Big Bang, según la cual el Universo que observamos se inició hace un tiempo finito.


Bang

Prácticamente todos los trabajos teóricos actuales en cosmología tratan de ampliar o concretar aspectos de la teoría del Big Bang. Gran parte del trabajo actual en cosmología trata de entender cómo se formaron las galaxias en el contexto del Big Bang, comprender lo que allí ocurrió y cotejar nuevas observaciones con la teoría fundamental.

A finales de los años 1990 y principios del siglo XXI, se lograron grandes avances en la cosmología del Big Bang como resultado de importantes adelantos en telescopía, en combinación con grandes cantidades de datos satelitales de COBE, el telescopio espacial Hubble y WMAP. Estos datos han permitido a los cosmólogos calcular muchos de los parámetros del Big Bang hasta un nuevo nivel de precisión, y han conducido al descubrimiento inesperado de que el Universo está en aceleración.
Visión general
Descripción del Big Bang
El Universo ilustrado en tres dimensiones espaciales y una dimensión temporal.


Michio Kaku ha señalado cierta paradoja en la denominación big bang (gran explosión): en cierto modo no puede haber sido grande ya que se produjo exactamente antes del surgimiento del espacio-tiempo, habría sido el mismo big bang lo que habría generado las dimensiones desde una singularidad; tampoco es exactamente una explosión en el sentido propio del término ya que no se propagó fuera de sí mismo.

Basándose en medidas de la expansión del Universo utilizando observaciones de las supernovas tipo 1a, en función de la variación de la temperatura en diferentes escalas en la radiación de fondo de microondas y en función de la correlación de las galaxias, la edad del Universo es de aproximadamente 13,7 ± 0,2 miles de millones de años. Es notable el hecho de que tres mediciones independientes sean consistentes, por lo que se consideran una fuerte evidencia del llamado modelo de concordancia que describe la naturaleza detallada del Universo.


Un post explosivo(big bang)

El universo en sus primeros momentos estaba lleno homogénea e isótropamente de una energía muy densa y tenía una temperatura y presión concomitantes. Se expandió y se enfrió, experimentando cambios de fase análogos a la condensación del vapor o a la congelación del agua, pero relacionados con las partículas elementales.

Aproximadamente 10-35 segundos después del tiempo de Planck un cambio de fase causó que el Universo se expandiese de forma exponencial durante un período llamado inflación cósmica. Al terminar la inflación, los componentes materiales del Universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en forma relativista. Con el crecimiento en tamaño del Universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarks y los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo de alguna manera la asimetría observada actualmente entre la materia y la antimateria. Las temperaturas aún más bajas condujeron a nuevos cambios de fase, que rompieron la simetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales. Más tarde, protones y neutrones se combinaron para formar los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial. Al enfriarse el Universo, la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300.000 años, los electrones y los núcleos se combinaron para formar los átomos (mayoritariamente de hidrógeno). Por eso, la radiación se desacopló de los átomos y continuó por el espacio prácticamente sin obstáculos. Ésta es la radiación de fondo de microondas.


Al pasar el tiempo, algunas regiones ligeramente más densas de la materia casi uniformemente distribuida crecieron gravitacionalmente, haciéndose más densas, formando nubes, estrellas, galaxias y el resto de las estructuras astronómicas que actualmente se observan. Los detalles de este proceso dependen de la cantidad y tipo de materia que hay en el Universo. Los tres tipos posibles se denominan materia oscura fría, materia oscura caliente y materia bariónica. Las mejores medidas disponibles (provenientes del WMAP) muestran que la forma más común de materia en el universo es la materia oscura fría. Los otros dos tipos de materia sólo representarían el 20 por ciento de la materia del Universo.

universo

El Universo actual parece estar dominado por una forma misteriosa de energía conocida como energía oscura. Aproximadamente el 70 por ciento de la densidad de energía del universo actual está en esa forma. Una de las propiedades características de este componente del universo es el hecho de que provoca que la expansión del universo varíe de una relación lineal entre velocidad y distancia, haciendo que el espacio-tiempo se expanda más rápidamente que lo esperado a grandes distancias. La energía oscura toma la forma de una constante cosmológica en las ecuaciones de campo de Einstein de la relatividad general, pero los detalles de esta ecuación de estado y su relación con el modelo estándar de la física de partículas continúan siendo investigados tanto en el ámbito de la física teórica como por medio de observaciones.

Más misterios aparecen cuando se investiga más cerca del principio, cuando las energías de las partículas eran más altas de lo que ahora se puede estudiar mediante experimentos. No hay ningún modelo físico convincente para el primer 10-33 segundo del universo, antes del cambio de fase que forma parte de la teoría de la gran unificación. En el "primer instante", la teoría gravitacional de Einstein predice una singularidad gravitacional en donde las densidades son infinitas. Para resolver esta paradoja física, hace falta una teoría de la gravedad cuántica. La comprensión de este período de la historia del universo figura entre los mayores problemas no resueltos de la física.
Base teórica


En su forma actual, la teoría del Big Bang depende de tres suposiciones:

1. La universalidad de las leyes de la física, en particular de la teoría de la relatividad general
2. El principio cosmológico
3. El principio de Copérnico

Inicialmente, estas tres ideas fueron tomadas como postulados, pero actualmente se intenta verificar cada una de ellas. La universalidad de las leyes de la física ha sido verificada al nivel de las más grandes constantes físicas, llevando su margen de error hasta el orden de 10-5. La isotropía del universo que define el principio cosmológico ha sido verificada hasta un orden de 10-5. Actualmente se intenta verificar el principio de Copérnico observando la interacción entre grupos de galaxias y el CMB por medio del efecto Sunyaev-Zeldovich con un nivel de exactitud del 1 por ciento.

planetas

La teoría del Big Bang utiliza el postulado de Weyl para medir sin ambigüedad el tiempo en cualquier momento en el pasado a partir del la época de Planck. Las medidas en este sistema dependen de coordenadas conformales, en las cuales las llamadas distancias codesplazantes y los tiempos conformales permiten no considerar la expansión del universo para las medidas de espacio-tiempo. En ese sistema de coordenadas, los objetos que se mueven con el flujo cosmológico mantienen siempre la misma distancia codesplazante, y el horizonte o límite del universo se fija por el tiempo codesplazante.

creacion

Visto así, el Big Bang no es una explosión de materia que se aleja para llenar un universo vacío; es el espacio-tiempo el que se extiende.Y es su expansión la que causa el incremento de la distancia física entre dos puntos fijos en nuestro universo.Cuando los objetos están ligados entre ellos (por ejemplo, por una galaxia), no se alejan con la expansión del espacio-tiempo, debido a que se asume que las leyes de la física que los gobiernan son uniformes e independientes del espacio métrico. Más aún, la expansión del universo en las escalas actuales locales es tan pequeña que cualquier dependencia de las leyes de la física en la expansión no sería medible con las técnicas actuales.
Evidencias

En general, se consideran tres las evidencias empíricas que apoyan la teoría cosmológica del Big Bang. Éstas son: la expansión del universo que se expresa en la Ley de Hubble y que se puede apreciar en el corrimiento hacia el rojo de las galaxias, las medidas detalladas del fondo cósmico de microondas, y la abundancia de elementos ligeros. Además, la función de correlación de la estructura a gran escala del Universo encaja con la teoría del Big Bang.

Expansión expresada en la ley de Hubble
Artículo principal: Ley de Hubble


De la observación de galaxias y quasares lejanos se desprende la idea de que estos objetos experimentan un corrimiento hacia el rojo, lo que quiere decir que la luz que emiten se ha desplazado proporcionalmente hacia longitudes de onda más largas. Esto se comprueba tomando el espectro de los objetos y comparando, después, el patrón espectroscópico de las líneas de emisión o absorción correspondientes a átomos de los elementos que interactúan con la radiación. En este análisis se puede apreciar cierto corrimiento hacia el rojo, lo que se explica por una velocidad recesional correspondiente al efecto Doppler en la radiación. Al representar estas velocidades recesionales frente a las distancias respecto a los objetos, se observa que guardan una relación lineal, conocida como Ley de Hubble:

v=H_0 cdot D ,

donde v es la velocidad recesional, D es la distancia al objeto y H0 es la constante de Hubble, que el satélite WMAP estimó en 71 ± 4 km/s/Mpc.
Radiación cósmica de fondo
Artículo principal: Radiación de fondo de microondas
Imagen de la radiación de fondo de microondas.


big

Una de las predicciones de la teoría del Big Bang es la existencia de la radiación cósmica de fondo, radiación de fondo de microondas o CMB (Cosmic microwave background). El universo temprano, debido a su alta temperatura, se habría llenado de luz emitida por sus otros componentes. Mientras el universo se enfriaba debido a la expansión, su temperatura habría caído por debajo de 3.000 K. Por encima de esta temperatura, los electrones y protones están separados, haciendo el universo opaco a la luz. Por debajo de los 3.000 K se forman los átomos, permitiendo el paso de la luz a través del gas del universo. Esto es lo que se conoce como disociación de fotones.

La radiación en este momento habría tenido el espectro del cuerpo negro y habría viajado libremente durante el resto de vida del universo, sufriendo un corrimiento hacia el rojo como consecuencia de la expansión de Hubble. Esto hace variar el espectro del cuerpo negro de 3.345 K a un espectro del cuerpo negro con una temperatura mucho menor. La radiación, vista desde cualquier punto del universo, parecerá provenir de todas las direcciones en el espacio.

En 1965, Arno Penzias y Robert Wilson, mientras desarrollaban una serie de observaciones de diagnóstico con un receptor de microondas propiedad de los Laboratorios Bell, descubrieron la radiación cósmica de fondo. Ello proporcionó una confirmación sustancial de las predicciones generales respecto al CMB —la radiación resultó ser isótropa y constante, con un espectro del cuerpo negro de cerca de 3 K— e inclinó la balanza hacia la hipótesis del Big Bang. Penzias y Wilson recibieron el Premio Nobel por su descubrimiento.


En 1989, la NASA lanzó el COBE (Cosmic background Explorer) y los resultados iniciales, proporcionados en 1990, fueron consistentes con las predicciones generales de la teoría del Big Bang acerca de la CMB. El COBE halló una temperatura residual de 2.726 K, y determinó que el CMB era isótropo en torno a una de cada 105 partes. Durante la década de los 90 se investigó más extensamente la anisotropía en el CMB mediante un gran número de experimentos en tierra y, midiendo la distancia angular media (la distancia en el cielo) de las anisotropías, se vio que el universo era geométricamente plano.


Fuente: http://www.youtube.com/watch?v=xYb4V0H0Ezw

A principios de 2003 se dieron a conocer los resultados de la Sonda Wilkinson de Anisotropías del fondo de Microondas (en inglés Wilkinson Microwave Anisotropy Probe o WMAP), mejorando los que hasta entonces eran los valores más precisos de algunos parámetros cosmológicos. (Véase también experimentos sobre el fondo cósmico de microondas). Este satélite también refutó varios modelos inflacionistas específicos, pero los resultados eran constantes con la teoría de la inflación en general.
Abundancia de elementos primordiales
Artículo principal: Nucleosíntesis primordial

Se puede calcular, usando la teoría del Big Bang, la concentración de helio-4, helio-3, deuterio y litio-7.1 en el universo como proporciones con respecto a la cantidad de hidrógeno normal, H. Todas las abundancias dependen de un solo parámetro: la razón entre fotones y bariones, que por su parte puede calcularse independientemente a partir de la estructura detallada de la radiación cósmica de fondo. Las proporciones predichas (en masa, no volumen) son de cerca de 0,25 para la razón 4He/H, alrededor de 10-3 para 2He/H, y alrededor de 10-4 para 3He/H.

Estas abundancias medidas concuerdan, al menos aproximadamente, con las predichas a partir de un valor determinado de la razón de bariones a fotones, y se considera una prueba sólida en favor del Big Bang, ya que esta teoría es la única explicación conocida para la abundancia relativa de elementos ligeros. De hecho no hay, fuera de la teoría del Big Bang, ninguna otra razón obvia por la que el universo debiera, por ejemplo, tener más o menos helio en proporción al hidrógeno.
Evolución y distribución galáctica



Fuente: http://www.youtube.com/watch?v=f54puRZ8Ats

Las observaciones detalladas de la morfología y estructura de las galaxias y cuásares proporcionan una fuerte evidencia del Big Bang. La combinación de las observaciones con la teoría sugiere que los primeros cuásares y galaxias se formaron hace alrededor de mil millones de años después del Big Bang, y desde ese momento se han estado formando estructuras más grandes, como los cúmulos de galaxias y los supercúmulos. Las poblaciones de estrellas han ido envejeciendo y evolucionando, de modo que las galaxias lejanas (que se observan tal y como eran en el principio del universo) son muy diferentes a las galaxias cercanas (que se observan en un estado más reciente). Por otro lado, las galaxias formadas hace relativamente poco son muy diferentes a las galaxias que se formaron a distancias similares pero poco después del Big Bang. Estas observaciones son argumentos sólidos en contra de la teoría del estado estacionario. Las observaciones de la formación estelar, la distribución de cuásares y galaxias, y las estructuras más grandes concuerdan con las simulaciones obtenidas sobre la formación de la estructura en el universo a partir del Big Bang, y están ayudando a completar detalles de la teoría.


Otras evidencias

Después de cierta controversia, la edad del Universo estimada por la expansión Hubble y la CMB (Radiación cósmica de fondo) concuerda en gran medida (es decir, ligeramente más grande) con las edades de las estrellas más viejas, ambos medidos aplicando la teoria de la evolución estelar de los cúmulos globulares y a través de la fecha radiométrica individual en las estrellas de la segunda Población. En cosmología física, la teoría del Big Bang o teoría de la gran explosión es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de una singularidad espaciotemporal. Técnicamente, este modelo se basa en una colección de soluciones de las ecuaciones de la relatividad general, llamados modelos de Friedmann- Lemaître - Robertson - Walker. El término "Big Bang" se utiliza tanto para referirse específicamente al momento en el que se inició la expansión observable del Universo (cuantificada en la ley de Hubble), como en un sentido más general para referirse al paradigma cosmológico que explica el origen y la evolución del mismo.


Problemas comunes

Históricamente, han surgido varios problemas dentro de la teoría del Big Bang. Algunos de ellos sólo tienen interés histórico y han sido evitados, ya sea por medio de modificaciones a la teoría o como resultado de observaciones más precisas. Otros aspectos, como el problema de la penumbra en cúspide y el problema de la galaxia enana de materia oscura fría, no se consideran graves, dado que pueden resolverse a través de un perfeccionamiento de la teoría.

Existe un pequeño número de proponentes de cosmologías no estándar que piensan que no hubo Big Bang. Afirman que las soluciones a los problemas conocidos del Big Bang contienen modificaciones ad hoc y agregados a la teoría. Las partes más atacadas de la teoría incluyen lo concerniente a la materia oscura, la energía oscura y la inflación cósmica. Cada una de estas características del universo ha sido sugerida mediante observaciones de la radiación de fondo de microondas, la estructura a gran escala del cosmos y las supernovas de tipo IA, pero se encuentran en la frontera de la física moderna (ver problemas no resueltos de la física). Si bien los efectos gravitacionales de materia y energía oscuras son bien conocidos de forma observacional y teórica, todavía no han sido incorporados al modelo estándar de la física de partículas de forma aceptable. Estos aspectos de la cosmología estándar siguen sin tener una explicación adecuada, pero la mayoría de los astrónomos y los físicos aceptan que la concordancia entre la teoría del Big Bang y la evidencia observacional es tan cercana que permite establecer con cierta seguridad casi todos los aspectos básicos de la teoría.


Los siguientes son algunos de los problemas y enigmas comunes del Big Bang.
El problema del segundo principio de la termodinámica
Artículo principal: Segundo principio de la termodinámica

El problema del segundo principio de la termodinámica resulta del hecho de que de este principio se deduce que la entropía, el desorden, aumenta si se deja al sistema (el universo) seguir su propio rumbo. Una de las consecuencias de la entropía es el aumento en la proporción entre radiación y materia por lo tanto el universo debería terminar en una muerte térmica, una vez que la mayor parte de la materia se convierta en fotones y estos se diluyan en la inmensidad del universo.

Otro problema señalado por Roger Penrose es que la entropía parece haber sido anormalmente pequeña en el estado inicial del universo. Penrose evalúa la probabilidad de un estado inicial en aproximadamente: 10^{10^{123}}. De acuerdo con Penrose y otros, la teoría cosmológica ordinaria no explica porqué la entropía inicial del universo es tan anormalmente baja, y propone la hipótesis de curvatura de Weil en conexión con ella. De acuerdo con esa hipótesis una teoría cuántica de la gravedad debería dar una explicación tanto del porqué el universo se inició en un estado de curvatura de Weil nula y de una entropía tan baja. Aunque todavía no se ha logrado una teoría de la gravedad cuántica satisfactoria.

Por otro lado en la teoría standard el estado entrópico anormalmente bajo, se considera que es producto de una "gran casualidad" justificada en base al principio antrópico. Postura que Penrose y otros consideran filosóficamente insatisfactoria.
El problema del horizonte
Artículo principal: Problema del horizonte



Fuente: http://www.youtube.com/watch?v=3Tu-F4UzIfc

El problema del horizonte, también llamado problema de la causalidad, resulta del hecho de que la información no puede viajar más rápido que la luz, de manera que dos regiones en el espacio separadas por una distancia mayor que la velocidad de la luz multiplicada por la edad del universo no pueden estar causalmente conectadas. En este sentido, la isotropía observada de la radiación de fondo de microondas (CMB) resulta problemática, debido a que el tamaño del horizonte de partículas en ese tiempo corresponde a un tamaño de cerca de dos grados en el cielo. Si el universo hubiera tenido la misma historia de expansión desde la época de Planck, no habría mecanismo que pudiera hacer que estas regiones tuvieran la misma temperatura.

Esta aparente inconsistencia se resuelve con la teoría inflacionista, según la cual un campo de energía escalar isótropo domina el universo al transcurrir un tiempo de Planck luego de la época de Planck. Durante la inflación, el universo sufre una expansión exponencial, y regiones que se afectan mutuamente se expanden más allá de sus respectivos horizontes. El principio de incertidumbre de Heisenberg predice que durante la fase inflacionista habrá fluctuaciones primordiales, que se simplificarán hasta la escala cósmica. Estas fluctuaciones sirven de semilla para toda la estructura actual del universo. Al pasar la inflación, el universo se expande siguiendo la ley de Hubble, y las regiones que estaban demasiado lejos para afectarse mutuamente vuelven al horizonte. Esto explica la isotropía observada de la CMB. La inflación predice que las fluctuaciones primordiales son casi invariantes según la escala y que tienen una distribución normal o gaussiana, lo cual ha sido confirmado con precisión por medidas de la CMB.


En 2003 apareció otra teoría para resolver este problema, la velocidad variante de la luz de João Magueijo, que aunque a la larga contradice la relatividad de Einstein usa su ecuación incluyendo la constante cosmológica para resolver el problema de una forma muy eficaz que también ayuda a solucionar el problema de la planitud.
El problema de la planitud
Artículo principal: problema de la planitud


El problema de la planitud (flatness en inglés) es un problema observacional que resulta de las consecuencias que la métrica de Friedmann-Lemaître-Robertson-Walker tiene para con la geometría del universo. En general, se considera que existen tres tipos de geometrías posibles para nuestro universo según su curvatura: geometría hiperbólica, geometría euclidiana o plana y geometría elíptica. Dicha geometría viene determinada por la cantidad total de densidad de energía del universo (medida mediante el tensor de tensión-energía).

Siendo ρ la densidad de energía medida observacionalmente y ρc la densidad crítica se tiene que para las diferentes geometrías las relaciones entre ambos parámetros han de ser las que siguen:

Hiperbólico --> ρ < ρc||Plano --> ρ=ρc||Elíptico --> ρ > ρc

Se ha medido que en los primeros momentos del universo su densidad tuvo que ser 10-15 veces (una milbillonésima parte) la densidad crítica. Cualquier desviación mayor hubiese conducido a una muerte térmica o un Big Crunch y el universo no sería como ahora.

La solución a este problema viene de nuevo de la teoría inflacionaria. Durante el periodo inflacionario el espaciotiempo se expandió tan rápido que provocó una especie de estiramiento del universo acabando con cualquier curvatura residual que pudiese haber. Así la inflación pudo hacer al universo plano, de ahí el nombre planitud.


Edad de los cúmulos globulares

A mediados de los años 90, las observaciones realizadas de los cúmulos globulares parecían no concondar con la Teoría del Big Bang. Las simulaciones realizadas por ordenador de acuerdo con las observaciones de las poblaciones estelares de cúmulos de galaxias sugirieron una edad de cerca de 15.000 millones de años, lo que entraba en conflicto con la edad del universo, estimada en 13.700 millones de años. El problema quedó resuelto a finales de esa década, cuando las nuevas simulaciones realizadas, que incluían los efectos de la pérdida de masa debida a los vientos estelares, indicaron que los cúmulos globulares eran mucho más jóvenes. Quedan aún en el aire algunas preguntas en cuanto a con qué exactitud se miden las edades de los cúmulos, pero está claro que éstos son algunos de los objetos más antiguos del universo.
Monopolos magnéticos

La objeción de los monopolos magnéticos fue propuesta a finales de la década de 1970. Las teorías de la gran unificación predicen defectos topológicos en el espacio que se manifestarían como monopolos magnéticos encontrándose en el espacio con una densidad mucho mayor a la observada. De hecho, hasta ahora, no se ha dado con ningún monopolo. Este problema también queda resuelto mediante la inflación cósmica, dado que ésta elimina todos los puntos defectuosos del universo observable de la misma forma que conduce la geometría hacia su forma plana. Es posible que aun así pueda haber monopolos pero se ha calculado que apenas si habría uno por cada universo visible, una cantidad ínfima y no observable en todo caso.
Materia oscura


En las diversas observaciones realizadas durante las décadas de los 70 y 80 (sobre todo las de las curvas de rotación de las galaxias) se mostró que no había suficiente materia visible en el universo para explicar la intensidad aparente de las fuerzas gravitacionales que se dan en y entre las galaxias. Esto condujo a la idea de que hasta un 90% de la materia en el universo no es materia común o bariónica sino materia oscura. Además, la asunción de que el universo estuviera compuesto en su mayor parte por materia común llevó a predicciones que eran fuertemente inconsistentes con las observaciones. En particular, el universo es mucho menos "inhomogéneo" y contiene mucho menos deuterio de lo que se puede considerar sin la presencia de materia oscura. Mientras que la existencia de la materia oscura era inicialmente polémica, ahora es una parte aceptada de la cosmología estándar, debido a las observaciones de las anisotropías en el CMB, dispersión de velocidades de los cúmulos de galaxias, y en las estructuras a gran escala, estudios de las lentes gravitacionales y medidas por medio de rayos x de los cúmulos de galaxias. La materia oscura se ha detectado únicamente a través de su huella gravitacional; no se ha observado en el laboratorio ninguna partícula que se le pueda corresponder. Sin embargo, hay muchos candidatos a materia oscura en física de partículas (como, por ejemplo, las partículas pesadas y neutras de interacción débil o WIMP (Weak Interactive Massive Particles), y se están llevando a cabo diversos proyectos para detectarla.
Energía oscura

En los años 90, medidas detalladas de la densidad de masa del universo revelaron que ésta sumaba en torno al 30% de la densidad crítica. Puesto que el universo es plano, como indican las medidas del fondo cósmico de microondas, quedaba un 70% de densidad de energía sin contar. Este misterio aparece ahora conectado con otro: las mediciones independientes de las supernovas de tipo Ia han revelado que la expansión del universo experimenta una aceleración de tipo no lineal, en vez de seguir estrictamente la Ley de Hubble. Para explicar esta aceleración, la relatividad general necesita que gran parte del universo consista en un componente energético con gran presión negativa. Se cree que esta energía oscura constituye ese 70% restante. Su naturaleza sigue siendo uno de los grandes misterios del Big Bang. Los candidatos posibles incluyen una constante cosmológica escalar y una quintaesencia. Actualmente se están realizando observaciones que podrían ayudar a aclarar este punto.


El futuro de acuerdo con la teoría del Big Bang

Antes de las observaciones de la energía oscura, los cosmólogos consideraron dos posibles escenarios para el futuro del universo. Si la densidad de masa del Universo se encuentra sobre la densidad crítica, entonces el Universo alcanzaría un tamaño máximo y luego comenzaría a colapsarse. Éste se haría más denso y más caliente nuevamente, terminando en un estado similar al estado en el cual empezó en un proceso llamado Big Crunch. Por otro lado, si la densidad en el Universo es igual o menor a la densidad crítica, la expansión disminuiría su velocidad, pero nunca se detendría. La formación de estrellas cesaría mientras el Universo en crecimiento se haría menos denso cada vez. El promedio de la temperatura del universo podría acercarse asintóticamente al cero absoluto (0 K ó -273,15 °C). Los agujeros negros se evaporarían por efecto de la radiación de Hawking. La entropía del universo se incrementaría hasta el punto en que ninguna forma de energía podría ser extraída de él, un escenario conocido como muerte térmica. Más aún, si existe la descomposición del protón, proceso por el cual un protón decaería a partículas menos masivas emitiendo radiación en el proceso, entonces todo el hidrógeno, la forma predominante del materia bariónica en el universo actual, desaparecería a muy largo plazo, dejando solo radiación.

Las observaciones modernas de la expansión acelerada implican que cada vez una mayor parte del universo visible en la actualidad quedará más allá de nuestro horizonte de sucesos y fuera de contacto. Se desconoce cuál sería el resultado de este evento. El modelo Lambda-CMD del universo contiene energía oscura en la forma de una constante cosmológica (de alguna manera similar a la que había incluido Einstein en su primera versión de las ecuaciones de campo). Esta teoría sugiere que sólo los sistemas mantenidos gravitacionalmente, como las galaxias, se mantendrían juntos, y ellos también estarían sujetos a la muerte térmica a medida que el universo se enfriase y expandiese. Otras explicaciones de la energía oscura-llamadas teorías de la energía fantasma sugieren que los cúmulos de galaxias y finalmente las galaxias mismas se desgarrarán por la eterna expansión del universo, en el llamado Big Rip.




Fuente: http://www.youtube.com/watch?v=7YClFJm5TaI

A pesar de que el modelo del Big Bang se encuentra bien establecido en la cosmología, es probable que se redefina en el futuro. Se tiene muy poco conocimiento sobre el universo más temprano, durante el cual se postula que ocurrió la inflación. También es posible que en esta teoría existan porciones del Universo mucho más allá de lo que es observable en principio. En la teoría de la inflación, esto es un requisito: La expansión exponencial ha empujado grandes regiones del espacio más allá de nuestro horizonte observable. Puede ser posible deducir qué ocurrió cuando tengamos un mejor entendimiento de la física a altas energías. Las especulaciones hechas al respecto, por lo general involucran teorías de gravedad cuántica.

Algunas propuestas son:

* inflación caótica
* cosmología de branas incluyendo el modelo ekpirótico en el cual el Big Bang es el resultado de una colisión entre membranas.
* un universo oscilante en el cual el estado primitivo denso y caliente del universo temprano deriva del Big Crunch de un universo similar al nuestro. El universo pudo haber atravesado un número infinito de big bangs y big crunchs. El cíclico, una extensión del modelo ekpirótico, es una variación moderna de esa posibilidad.
* modelos que incluyen la condición de contorno de Hartle-Hawking en la cual totalidad del espacio-tiempo es finito. Algunas posibilidades son compatibles cualitativamente unas con otras. En cada una se encuentran involucradas hipótesis aún no testeadas.


Interpretaciones filosóficas y religiosas

Existe un gran número de interpretaciones sobre la teoría del Big Bang que son completamente especulativas o extra-científicas. Algunas de estas ideas tratan de explicar la causa misma del Big Bang (primera causa), y fueron criticadas por algunos filósofos naturalistas por ser solamente nuevas versiones de la creación. Algunas personas creen que la teoría del Big Bang brinda soporte a antiguos enfoques de la creación, como por ejemplo el que se encuentra en el Génesis (ver creacionismo), mientras otros creen que todas las teorías del Big Bang son inconsistentes con las mismas.

El Big Bang como teoría científica no se encuentra asociado con ninguna religión. Mientras algunas interpretaciones fundamentalistas de las religiones entran en conflicto con la historia del universo postulada por la teoría del Big Bang, la mayoría de las interpretaciones son liberales. A continuación sigue una lista de varias interpretaciones religiosas de la teoría del Big Bang (que son hasta cierto punto incompatibles con la propia descripción científica del mismo):


* En la Biblia cristiana aparecen dos versículos que hablarían del big bang y el big crunch: «Él está sentado sobre el círculo de la tierra, cuyos moradores son como langostas; él extiende los cielos como una cortina, los despliega como una tienda para morar» (Isaías 40.22). «Y todo el ejército de los cielos se disolverá, y se enrollarán los cielos como un libro; y caerá todo su ejército como se cae la hoja de la parra, y como se cae la de la higuera» (Isaías 34.4)[3]
* La Iglesia Católica Romana ha aceptado el Big Bang como una descripción del origen del Universo. Se ha sugerido que la teoría del Big Bang es compatible con las vías de santo Tomás de Aquino, en especial con la primera de ellas sobre el movimiento, así como con la quinta.
* Algunos estudiantes del Kabbalah, el deísmo y otras fes no antropomórficas, concuerdan con la teoría del Big Bang, conectándola por ejemplo con la teoría de la "retracción divina" (tzimtzum) como es explicado por el judío Moisés Maimónides.
* Algunos musulmanes modernos creen que el Corán hace un paralelo con el Big Bang en su relato sobre la creación: «¿No ven los no creyentes que los cielos y la Tierra fueron unidos en una sola unidad de creación, antes de que nosotros los separásemos a la fuerza? Hemos creado todos los seres vivientes a partir del agua» (capítulo 21, versículo 30). El Corán también parece describir un universo en expansión: «Hemos construido el cielo con poder, y lo estamos expandiendo» (52.47).
* Algunas ramas teístas del hinduismo, tales como las tradiciones vishnuistas, conciben una teoría de la creación con ejemplos narrados en el tercer canto del Bhagavata Purana (principalmente, en los capítulos 10 y 26), donde se describe un estado primordial se expande mientras el Gran Vishnú observa, transformándose en el estado activo de la suma total de la materia (prakriti).
* El budismo posee una concepción del universo en el cual no hay un evento de creación. Sin embargo, no parece ser que la teoría del Big Bang entrara en conflicto con la misma, ya que existen formas de obtener un universo eterno según el paradigma. Cierto número de populares filósofos Zen estuvieron muy interesados, en particular, por el concepto del universo oscilante.



Fuente: http://www.youtube.com/watch?v=q4tr1vg0Z2I

EL BIG BANG: Durante casi todo el transcurso de la historia de la Física y de la Astronomía modernas no hubo fundamentos adecuados, de observación y teóricos, sobre los cuales construir una historia del Universo primitivo. Desde mediados de la década del ‘60, todo esto ha cambiado. Se ha difundido la aceptación de una teoría sobre el Universo primitivo que los astrónomos suelen llamar “el modelo corriente”. Es muy similar a lo que a veces se denomina la teoría del Big Bang o “Gran explosión”, pero complementada con indicaciones mucho más específicas sobre el contenido del Universo.

Si escuchamos el silbato de un tren que se aleja rápidamente, su silbido nos parecerá más grave que si el tren estuviera quieto. El sonido parece tener una mayor longitud de onda cuando el tren se aleja. Esta situación corresponde al fenómeno señalado primeramente por Johann Doppler en 1842. De la misma manera, la luz de una fuente que se aleja es percibida como si tuviese una longitud mayor: si el color original fuera naranja, la luz se percibiría más rojiza. Esto se llama “corrimiento hacia el rojo” y es una manifestación del efecto Doppler en las ondas luminosas. Ciertos análisis de la luz proveniente de estrellas y galaxias muestran que, en la inmensa mayoría de los casos, hay un corrimiento hacia el rojo. Esto puede explicarse suponiendo un Universo en expansión en el que cada galaxia se aleja de las otras; como si fuese el resultado de algún género de explosión.

A mediados de los años ‘60, A. Penzias y R. Wilson detectaron ondas de radio de longitudes cercanas a los 10 cm (microondas), procedentes del espacio exterior con una particularidad singular. La intensidad de estas señales era la misma independientemente de la dirección en que se situara la antena. Por lo tanto, no podían ser adjudicadas a ninguna estrella, galaxia o cuerpo estelar en particular. Estas microondas parecían llenar todo el espacio y ser equivalentes a la radiación emitida por un cuerpo negro a 3K. Los astrofísicos teóricos comprendieron que esta “radiación cósmica de fondo de microondas” era compatible con la suposición de que en el pasado el Universo era muy denso y caliente.

En el comienzo hubo una explosión. No como las que conocemos en la Tierra, que parten de un centro definido y se expanden hasta abarcar una parte más o menos grande del aire circundante, sino una explosión que se produjo simultáneamente en todas partes, llenando desde el comienzo todo el espacio y en la que cada partícula de materia se alejó rápidamente de toda otra partícula. “Todo el espacio”, en este contexto, puede significar, o bien la totalidad de un Universo infinito, o bien la totalidad de un Universo finito que se curva sobre sí mismo como la superficie de una esfera. Ninguna de estas posibilidades es fácil de comprender, pero esto no debe ser un obstáculo; en el Universo primitivo, importa poco que el espacio sea finito o infinito.


explocion
Representacion ilustrada del Big Bang.

Bang
Telescopio espacial Hubble (NASA). El corrimiento hacia el rojo en la composición espectral de la luz estelar puede ser interpretado suponiendo que el Universo está en expansión.

Al cabo de un centésimo de segundo aproximadamente, que es el momento más primitivo del que podemos hablar con cierta seguridad, la temperatura fue de unos cien mii millones (1011) de grados centígrados. Se trata de un calor mucho mayor aún que el de la estrella más caliente, tan grande, en verdad, que no pueden mantenerse unidos los componentes de la materia ordinaria: moléculas, átomos, ni siquiera núcleos de átomos. En cambio, la materia separada en esta explosión consistía en diversos tipos de las llamadas partículas elementales, que son el objeto de estudio de la moderna Física nuclear de altas energías.

Un post explosivo(big bang)
Las microondas que se detectan con igual intensidad en cualquier dirección en que se apunte la antena, no pueden provenir de un cuerpo celeste en particular. Son propias del conjunto del Universo y hacen suponer que en el pasado éste era denso y caliente.

Un tipo de partícula presente en gran cantidad era el electrón, partícula con carga negativa que fluye por los cables transportadores de corriente eléctrica y constituye las partes exteriores de todos los átomos y moléculas del Universo actual. Otro tipo de partículas que abundaban en tiempos primitivos era el positrón, partícula de carga positiva que tiene la misma masa que el electrón. En el Universo actual, sólo se encuentran positrones en los laboratorios de altas energías, en algunas especies de radiactividad y en los fenómenos astronómicos violentos, como los rayos cósmicos y las supernovas; pero en el Universo primitivo el número de positrones era casi exactamente igual al número de electrones. Además de los electrones y los positrones, había cantidades similares de diversas clases de neutrinos, fantasmales partículas que carecen de masa y carga eléctrica. Finalmente, el Universo estaba lleno de fotones de luz. Estas partículas eran generadas continuamente a partir de la energía pura, y después de una corta vida, eran aniquiladas nuevamente. Su número, parlo tanto, no estaba prefijado, sino que lo determinaba el balance entre los procesos de creación y de aniquilamiento.


Fuente: http://www.youtube.com/watch?v=thbENyGSU2c

De este balance, podemos inferir que la densidad de esta “sopa cósmica”, a una temperatura de cien mil millones de grados, era cuatro mil millones (4. 10 a la 9) de veces mayor que la del agua. Hubo también una pequeña contaminación de partículas más pesadas, protones y neutrones, que en el mundo actual son los constituyentes de los núcleos atómicas. Las proporciones eran más o menos de un protón y un neutrón por cada mil millones de electrones, positrones, neutrinos o fotones. A medida que la explosión continuaba, la temperatura fue disminuyendo, hasta llegar a los treinta mil millones (3. 10 a la 10) de grados centígrados después de undécimo de segundo, diez mil millones de grados después de un segundo y tres mil millones de grados después de unos catorce segundos.

Esta temperatura era suficientemente baja como para que los electrones y positrones comenzaran a aniquilarse más rápidamente de lo que podían ser recreados a partir de fotones y los neutrinos. La energía liberada en este aniquilamiento de materia hizo disminuir temporalmente la velocidad a la que se enfriaba el Universo, pero la temperatura continuo disminuyendo, para llegar a los 1000 millones de grados al final de los tres primeros minutos.


Esta temperatura fue entonces suficiente para que los protones y neutrones empezaran a formar núcleos complejos, comenzando con el núcleo del hidrógeno pesado (o deuterio), que consiste en un protón y un neutrón. La densidad era aún bastante elevada (un poco menor que la del agua), de modo que estos núcleos ligeros pudieron unirse rápidamente en el núcleo más estable del helio, que consiste en dos protones y dos neutrones.

universo

Al final de los tres primeros minutos, el Universo contenía principalmente luz, neutrinos y antineutrinos. Había también una pequeña cantidad de material nuclear, formado ahora por un 73 % de hidrógeno y un 27 % de helio, aproximadamente, y por un número igualmente pequeño de electrones que habían quedado de la época del aniquilamiento entre electrones y positrones. Esta materia siguió separándose y se volvió cada vez más fría y menos densa. Mucho más tarde, después de algunos cientos de miles de años, se enfrió lo suficiente como para que los electrones se unieran a los núcleos para formar átomos de hidrógeno y de helio. El gas resultante, bajo la influencia de la gravitación, comenzaría a formar agrupamientos que finalmente se condensarían para constituir las galaxias y las estrellas del Universo actual. Pero los ingredientes con los que empezarían su vida las estrellas serian exactamente los preparados en los tres primeros minutos.


Fuente: http://www.youtube.com/watch?v=Dm4nC5PL6ok

ERRORES EN LA TEORÍA DEL BIG BANG O DE LA GRAN EXPLOSIÓN


De acuerdo a las investigaciones realizadas por el Grupo ELRON, especialmente a través del contacto telepático con el Thetán o Yo Superior (**) de Roger Penrose, maestro de Stephen Hawking, la teoría del Big Bang sostenida por su alumno es sólo parcialmente correcta.
En virtud de que parte del error en que ha incurrido Stephen Hawking fue debido a la influencia de su maestro, la parte espiritual o Yo Superior de Roger Penrose, como ya señalamos, nos solicitó encarecidamente que diéramos a conocer la verdad sobre el Big Bang.
A continuación, pues, transcribimos los diálogos sostenidos con Roger Penrose con nuevas explicaciones.


DIÁLOGOS CON ROGER PENROSE (II)

La siguiente transcripción es copia literal de la sesión celebrada el 28/9/98, en la que también se presentó el Thetán (Yo Superior) de Roger Penrose a aclarar algunas cuestiones pendientes.
Actuaron como médium Jorge Olguín y como interlocutor Horacio Velmont.


INTERLOCUTOR: ¿Quién se va a presentar...?
ROGER PENROSE: Prácticamente están todos ciegos y sordos, es como que no tienen desarrollado el sentido de la intuición y no se pueden dar cuenta de la gran importancia que es la verdadera comunicación...
INTERLOCUTOR: ¿Quién se está comunicando?
ROGER PENROSE: Soy el Thetán de Roger Penrose...
INTERLOCUTOR: Encantado, Maestro, de saludarlo nuevamente...
ROGER PENROSE: Hay una cita muy importante, de siglos anteriores, que dice: "Aquel que no quiere ver es porque tiene miedo de descubrir".
INTERLOCUTOR: Me gusta esa cita... ¿quién la dijo?
ROGER PENROSE: Es una cita anónima. Lo importante de la cita es que pone de manifiesto que el ser encarnado tiene a veces miedo de descubrir, porque su ego tiene miedo de la verdad... porque al encontrarse con la Verdad, ese ego se integra y ya deja de dominar.
El ego es el que produce la mediocridad. Dije, en una comunicación anterior, que el Big Bang no es el comienzo, sino un comienzo de tantos comienzos. Son ciclos de 40.000 millones de años terrestres que se van sucediendo una y otra vez.
En cada ciclo se va creando el universo tal cual lo conocemos. Los Big Bang son simultáneos, es decir, se crean los 22 universos paralelos y hay 22 Big Bang paralelos.
INTERLOCUTOR: ¿O sea que sería siempre lo mismo?
ROGER PENROSE: Así es. Es un latido. Cada vez puede ser distinta la vida, cada vez distinta la formación de las galaxias, cada vez distintos los soles, cada vez distinta la evolución...
Han pasado más de 15.000 millones de años desde la Creación de este Universo y el hombre aún no ha tomado conciencia de lo que es ni hacia adonde apunta.
Hay creaciones anteriores donde cada ser encarnado tomaba conciencia de lo que era en forma más rápida. Y el espíritu en Evolución se mudaba de casa.
INTERLOCUTOR: ¿Qué significa eso?
ROGER PENROSE: Voy a dar un ejemplo, especialmente para los físicos nucleares: supongamos que en esa Creación anterior hubiera habido planetas con vida inteligente en las estrellas de primera generación (en la actualidad el Sol es una estrella de segunda generación, porque tiene 5000 millones de años contra 15.000 millones de años de este universo, o sea hubo estrellas de 1ª generación que explotaron como supernovas al final de su ciclo, y otras que se transformaron en agujeros negros), e imaginemos que los habitantes de esos mundos ya hubiesen tomado conciencia de que el camino para poder evolucionar es Dar.
En esa Creación, los planos 2 y 3 estarían prácticamente casi desiertos, pues al haber eliminado los espíritus el rol de la mente reactiva no tendrían engramas, tampoco tendrían karmas y casi todos los Thetanes de los seres encarnados en esos planetas estarían en los planos 4 y 5, en los niveles de Maestría y de Luz. Ya prácticamente el encarnar en el plano físico no tendría razón de ser porque la raza habría evolucionado tanto que solamente las Entidades encarnarían en Misión para ayudar a otros seres menos evolucionados... ¿Hasta aquí estamos de acuerdo?
INTERLOCUTOR: Perfectamente...
ROGER PENROSE: Prosigo, entonces... ¿Pero qué sucede si ese sol de 1ª generación llegara al final de su ciclo y explotara como supernova? Prácticamente ese mundo con los seres evolucionados dejaría de existir. ¿Qué pasaría entonces con todos esos espíritus?
Automáticamente, esos espíritus en evolución encarnarían en planetas de sistemas solares próximos para ayudar a los habitantes de esos mundos vecinos a encontrar su camino hacia la Luz.
Eso es precisamente lo que ha pasado aquí en la Tierra. Hubo espíritus evolucionados que vinieron de otros mundos que ya habían desaparecido. Y esos son los llamados "profetas".
¿Cómo nadie lo percibió? ¿No sucede acaso que ahora que yo lo estoy diciendo, tú te preguntas: ¿Cómo no me di cuenta antes?
INTERLOCUTOR: Es cierto, es así. ¿O sea que los profetas no pertenecen a la evolución terrestre?
ROGER PENROSE: La mayoría, no. Por eso los grandes Maestros de Luz tienen un discernimiento tan grande. Es debido a su vasta experiencia...
INTERLOCUTOR: ¿Es su caso?
ROGER PENROSE: ¡Claro! Yo encarné en una oportunidad en el sistema de las Pléyades, pero debo dejar en claro algo. En la actualidad las Pléyades son estrellas en formación y no tienen planetas. Por eso debo aclarar el error que cometen aquellos supuestos contactados de la "New Age", que dicen que se comunican con seres de las Pléyades. Esa es una información errónea, pues reitero que actualmente no hay vida allí.
Hubo una civilización en las Pléyades hace 5.000 ó 6.000 millones de años. Después ese núcleo de estrellas estalló y sus planetas se desintegraron. Algunos de esos espíritus quedaron en suspenso en los planos espirituales correspondientes, donde las explosiones del mundo físico no le afectaron en absoluto. Otros encarnaron en sistemas estelares cercanos. Y el tiempo pasó.
Ahora, las Pléyades están nuevamente en formación, porque si las miran con un telescopio óptico se ven como cúmulos estelares y a su alrededor todavía están formándose planetas gaseosos.
Cuesta imaginar que cuando en las Pléyades ya había vida, recién estaba formándose el sol de este sistema. Y ahora hay vida en el sistema solar y en esas estrellas comienza un nuevo ciclo.
INTERLOCUTOR: Quiero aprovechar su presencia para preguntarle sobre la teoría de las "supercuerdas". ¿Es una teoría nueva?
ROGER PENROSE: No, la de las "supercuerdas" no es una teoría nueva, pues prácticamente se desarrolló en la década del ´60. En esta teoría, que es similar a la del Vórtice energético, los quark son las partículas fundamentales, pero son consecuencias de la vibración del vórtice, pasando éste a ser también fundamental. Un vórtice, en cierto sentido, corresponde a un número infinito de partículas elementales debido a que cada una de ellas comporta la facultad de poder vibrar en una multiplicidad de maneras. Es el distinto tono de las vibraciones el determinante que sugiere las propiedades de las partículas elementales. Según los físicos, esta teoría viene a ser la simplificación natural o el mejoramiento de nuestra teoría clásica de partículas. La teoría de "supercuerdas" dice que cada cuerda vibra de una manera.

Fuentes de Información - Un post explosivo(big bang)

Dar puntos
23 Puntos
Votos: 3 - T!score: 8/10
  • 1 Seguidores
  • 11.016 Visitas
  • 8 Favoritos

11 comentarios - Un post explosivo(big bang)

@wrchucho_3 Hace más de 4 años
muy bueno !
@titi40 Hace más de 4 años
Excelente post! Mucha info, te felicito, mañana puntines.
@fullzerox Hace más de 4 años
muy bueno 10!
@KmySama Hace más de 4 años
javim86 dijo:138 vicitas 2 coment!!! mmmMmmm asi me dan ganas de volver hacer un post asi. Me voy a tener q tirar para el lado de la alegria y te lo muestro ¬¬

pero bolu, vos nunca das tiempo :/ ponete una mina semi en bolas y su biografia (dos renglones) y muchas fotos y sos top XD
@goku10ssj Hace más de 4 años
ayer tube prueva d esto ,me saque un 10

+10
@jo_volturie Hace más de 3 años
osea que de la nada salio algo¿?
@sofy_glam Hace más de 2 años
Cuando todo era nada,
era nada el Principio.
Él era el Principio
y de la noche hizo luz.
Y fue el cielo
y esto que está aquí.

Genesis - Vox Dei
@sebacagnoni Hace más de 1 año
es muy lógica la teoría hasta que nos vamos a como se formo y ahí ya la teoría pierde sentido
@rivezd Hace más de 6 meses
no lo entiendo a ver si el universo se creo del bigbang de donde salio el bigbang??? si alguien me reponde