El Sistema Solar

Descripción general

"También resultan de interés los planetas que tienen diámetros visibles. De los existentes: Mercurio, Venus, Marte, Júpiter y Saturno, observé con mayor cuidado a Venus, notando que presentaba fases, parecidas a las fases de la Luna. Y descubrí, al observar a Júpiter, que estaba rodeado por cuatro lunas. Al contemplar Saturno noté que, curiosamente, parecía cambiar de forma. A veces se ve más redondo, y en otras ocasiones se observa achatado."
Galileo Galilei

Como consecuencia de la rotación de la Tierra sobre sí misma, desde su superficie terrestre un observador percibe que el cielo gira; las estrellas se mueven en conjunto, es decir, sin romper su configuración en las constelaciones. Por esta razón, las estrellas recibieron el nombre de astros fijos: tal como si estuviesen adheridas a la esfera celeste y se movieran con ella.

Sin embargo, no todos los puntos luminosos del cielo nocturno son estrellas ni permanecen fijos para un determinado observador. Algunos de ellos, observados durante varias noches consecutivas, permiten advertir un desplazamiento particular sobre el fondo uniforme de estrellas: son los planetas. La palabra planeta tiene su origen en un vocablo del griego antiguo que significa "astro errante" y dio cuenta de la propiedad de desplazarse que tienen ciertos cuerpos entre las estrellas del cielo nocturno.

Los planetas son objetos cuya superficie es fría, en equilibrio térmico con la radiación solar que recibe; no generan luz y brillan reflejando la luz del Sol. El brillo aparente de un planeta varía según sea la distancia a la que se encuentre de la Tierra.

Los planetas conocidos son satélites naturales del Sol o bien satélites de otros planetas; por esta razón no tiene sentido distinguir unos de otros, ya que alrededor del Sol giran "pequeños planetas" de tamaño inferior a la Luna o al de algunas lunas de Júpiter o Saturno. Los nombres de los planetas principales (visibles a simple vista) fueron asociados con dioses de la antigüedad: Mercurio, Venus, Marte, Júpiter y Saturno; éstos, junto con el de la Luna y el del Sol, inspiraron los nombres de los siete días de la semana en una gran cantidad de idiomas.

Hasta el siglo XV la Tierra era considerado el astro central del universo, a cuyo alrededor giraban los restantes planetas y la esfera de las estrellas fijas (configuración conocida como sistema geocéntrico);. No debiera sorprendernos que aún hoy, esta falsa hipótesis resulte un hecho evidente para un observador que por primera vez contempla el cielo, ya que no hay una evidencia directa (observacional) que pueda mostrar la falsedad de esa hipótesis; no se manifiesta ningún indicio inmediato que permita alguna otra explicación.

Sin embargo, el rápido desarrollo de las técnicas de observación y de los métodos deductivos, han conducido a ideas bastante más complejas acerca del universo que nos rodea y de la posición que ocupa la Tierra en el mismo.

Vistos desde la superficie terrestre, los cinco planetas mencionados describen trayectorias no muy simples en el cielo visible; esas trayectorias son el resultado de la proyección sobre el cielo, de sus respectivas órbitas en torno al Sol, al mismo tiempo que nosotros (en la Tierra) también estamos en movimiento.

Ptolomeo (año 137) diseñó un esquema geométrico y dinámico para explicar el movimiento de los planetas: supuso la Tierra ubicada en un centro y al Sol, la Luna y los planetas, girando a su alrededor en trayectorias (órbitas) circulares; más allá, se ubicaban las estrellas.

Este modelo supervivió durante siglos, más precisamente hasta la aparición de Nicolas Copérnico (1473-1543), quien enuncia un nuevo sistema, en el cual sugiere colocar el Sol en el centro y considerar que la Tierra y los demás planetas giran a su alrededor. De esta manera, el Sistema Solar resultó bastante más simple de comprender.

Con el Sol en el centro del conjunto planetario, la Tierra era ahora el tercer planeta en distancia desde él, luego de Mercurio y Venus. Después se ubica Marte, Júpiter, y por último Saturno; a su vez, la Luna comenzó a considerarse un satélite de la Tierra que giraba a su alrededor; en este modelo, las trayectorias seguían considerándose circulares.

La observación de las fases de Venus (similares a las fases lunares) descubiertas en 1610 mediante el uso "por primera vez" de un telescopio, por Galileo Galilei (1564-1642), confirmaron las ideas de Copérnico sobre la estructura del Sistema Solar.

En la misma época, Johannes Kepler (1571-1630) describió el movimiento planetario por medio de tres leyes fundamentales y desde entonces no quedaron dudas sobre cómo era el movimiento del sistema. Lo que hizo Kepler fue considerar que las órbitas de los planetas alrededor del Sol son elipses (que son figuras elongadas y cerradas) y no circunferencias como se había supuesto. Cabe destacar que aún hoy, las leyes de Kepler permiten no sólo explicar con bastante precisión la trayectoria de los planetas, sino también describir y calcular el recorrido de las naves espaciales.

Más tarde, en 1781, W. Herschel (1738-1822) descubre observacionalmente un nuevo planeta más allá de Saturno: Urano. Desde 1801, se comenzaron a descubrir pequeños planetitas entre Marte y Júpiter, llamados genéricamente asteroides. El primero en ser hallado y también el de mayores dimensiones, se denominó Ceres.

En 1845, 64 años después del descubrimiento de Urano, los astrónomos U. Leverrier (1811-1877) y J. Adams (1819-1892) calcularon, independientemente uno del otro, la posición que debería tener un nuevo y desconocido gran planeta que explicara las perturbaciones que aparecían en el movimiento de Urano. Determinaron la ubicación que debía tener en cierta época y en qué momento se debería buscarlo en el cielo; ese planeta postulado teóricamente fue descubierto inmediatamente en el lugar indicado por Adams y Leverrier; se lo denominó Neptuno, siguiendo la tradición de adjudicarles nombres de dioses antiguos.


El Sistema Solar

En esta rápida descripción de cómo fue extendiéndose el Sistema Solar no se mencionó el descubrimiento de satélites naturales, que comenzara cuando Galileo visualizó cuatro lunas en Júpiter, y que continúa hasta el presente a través de misiones espaciales interplanetarias y observaciones telescópicas. Tampoco se han mencionado aquí a los cometas.

Contamos entonces con nueve cuerpos principales (planetas), varias decenas de otros que giran en torno a los mismos (lunas) y miles de pequeños cuerpos (asteroides y cometas), todos en movimiento alrededor del Sol.

Los cometas se siguen encontrándose periódicamente y a medida que se perfeccionan los instrumentos de rastreo se hallan más y más asteroides. Inmediatamente surge el inquietante interrogante: Habrá un décimo planeta? Ciertas perturbaciones en la órbita de Plutón parecen deberse a un cuerpo celeste más lejano que posiblemente sea un planeta. Sin embargo, a pesar de que numerosas investigaciones se realizan en su búsqueda (tanto teóricas como observacionales), hasta ahora han sido infructuosas.


Las leyes de Kepler

Astronomia

Estas leyes han tenido un significado especial en el estudio de los astros, ya que permitieron describir su movimiento; fueron deducidas empíricamente por Johannes Kepler (1571-1630) a partir del estudio del movimiento de los planetas, para lo cual se sirvió de las precisas observaciones realizadas por Tycho Brahe (1546-1601). Sólo tiempo después, ya con el aporte de Isaac Newton (1642-1727), fue posible advertir que estas leyes son una consecuencia de la llamada Ley de Gravitación Universal.

La primera de estas leyes puede enunciarse de la siguiente manera:

Los planetas en su desplazamiento alrededor del Sol describen elipses, con el Sol ubicado en uno de sus focos.

Debe tenerse en cuenta que las elipses planetarias son muy poco excéntricas (es decir, la figura se aparta poco de la circunferencia) y la diferencia entre las posiciones extremas de un planeta son mínimas (a la máxima distancia de un planeta al Sol se denomina afelio y la mínima perihelio). La Tierra, por ejemplo, en su mínima distancia al Sol se halla a 147 millones de km, mientras que en su máxima lejanía no supera los 152 millones de km.

La segunda ley, puede expresarse como:

Las áreas barridas por el segmento que une al Sol con el planeta (radio vector) son proporcionales a los tiempos empleados para describirlas.

Esta ley implica que el radio vector barre áreas iguales en tiempos iguales; esto indica que la velocidad orbital es variable a lo largo de la trayectoria del astro siendo máxima en el perihelio y mínima en el afelio (la velocidad del astro sería constante si la órbita fuera un círculo perfecto). Por ejemplo, la Tierra viaja a 30,75 km/seg en el perihelio y "rebaja" a 28,76 en el afelio.

La tercera ley, finalmente, dice que:

El cuadrado del período de revolución de cada planeta es proporcional al cubo de la distancia media del planeta al Sol.

La tercera ley permite deducir que los planetas más lejanos al Sol orbitan a menor velocidad que los cercanos; dice que el período de revolución depende de la distancia al Sol.

Pero esto sólo es válido si la masa de cada uno de los planetas es despreciable en comparación al Sol. Si se quisiera calcular el período de revolución de astros de otro sistema planetario, se debería aplicar otra expresión comúnmente denominada tercera ley de Kepler generalizada.

Esta ley generalizada tiene en cuenta la masa del planeta y extiende la tercera ley clásica a los sistemas planetarios con una estrella central de masa diferente a la del Sol.

Perturbaciones

Rigurosamente, las masas de los planetas no son despreciables, por lo tanto, no es cierto que exista una proporcionalidad exacta tal como lo enuncia la tercera ley de Kepler.

Las otras dos leyes tampoco son rigurosamente válidas cuando se trata de más de dos cuerpos. Al respecto, deben tenerse en cuenta las atracciones mutuas entre los planetas de nuestro Sistema Solar, que se denominan perturbaciones.

De esta manera, las leyes de Kepler definen la solución al problema del movimiento de dos cuerpos aislados y sujetos únicamente a su atracción gravitatoria mutua; esta situación se denomina problema de los dos cuerpos.

Cuando se considera más de dos cuerpos, no existen fórmulas matemáticas rigurosas que permitan resolver el problema de determinar sus posiciones y su movimiento en general en forma exacta. A esta situación se denomina "problema de los n cuerpos". Este se estudia con métodos de aproximaciones sucesivas, es decir: dadas en cierto instante las masas y velocidades de n cuerpos (con n>2), se busca calcular sus posiciones y velocidades en cualquier instante futuro o pasado.


Nuestro sistema planetario

En el Sistema Solar, todos los planetas se desplazan (trasladan) alrededor del Sol prácticamente en el mismo plano y en el mismo sentido, este último coincidente con el sentido de rotación sobre sí mismos que tienen todos los planetas. El Sol rota sobre su propio eje también en el mismo sentido que los planetas que lo rodean.
Esto no se cumple para los cometas, que se trasladan en todas las direcciones posibles.

Otro detalle llamativo del Sistema es que está constituido por dos clases de planetas: unos pequeños y rocosos, cercanos al Sol, y otros grandes y gaseosos, bastante más distantes; en la separación entre esos dos tipos de planetas se encuentra la zona de los asteroides. Los astrónomos consideran factible que la naturaleza de esa estructura tenga su explicación en la manera en que se originó el Sistema.

Se cree que la nube original (nebulosa) de la cual se formó el Sistema Solar, en un comienzo rodeaba por completo al Sol primitivo; las partículas de polvo y gas de aquella nube se agruparon por efecto gravitatorio y constituyeron objetos sólidos.

Pero la radiación de la estrella central empujó hacia afuera los elementos volátiles, con el resultado de que en los trozos de materia cercanos al Sol comenzaron a predominar elementos más pesados, como el hierro y los silicatos. En cambio, en los cuerpos más lejanos, los elementos livianos como hidrógeno y helio se conservaron y formaron los grandes planetas con densas atmósferas.

El único sistema planetario que conocemos termina en Plutón con un diámetro total de unos 12 mil millones de kilómetros. Sin embargo, los astrónomos estiman que en las afueras del Sistema Solar (más allá de los planetas), hay una nube (o bien un disco) de núcleos cometarios, de manera tal que el diámetro del Sistema puede ser algo mayor.

sistema

* Período Sidério es el tiempo que un planeta tarda en completar una vuelta en torno al Sol, también se lo conoce como año del planeta. Aquí se dan unidades de días y años terrestres.

Descripción de los planetas

Por su constitución y características, se ha dividido a los planetas principales en "terrestres" (cuerpos sólidos, rodeados en ciertos casos por una tenue atmósfera de espesor correspondiente a un pequeño porcentaje de su diámetro) y "gigantes" ( astros de densidades muy bajas y grandes masas y dimensiones; la mayor parte de sus volúmenes están ocupados por sus atmósferas)

solar

* Período Sidério es el tiempo que un planeta tarda en completar una vuelta en torno al Sol, también se lo conoce como año del planeta. Aquí se dan unidades de días y años terrestres.

planetas

El Sistema Solar

Mercurio


Existen registros de Mercurio desde el año 264 A.C., aunque debido a su gran proximidad al Sol, es difícil verlo a simple vista. Los griegos le dieron dos nombres diferentes creyendo que se trataba de dos astros distintos, en razón de que algunas veces este planeta se observa hacia el Oeste y otras hacia el Este del Sol; entonces era Apolo cuando aparecía como "estrella" de la mañana y Hermes cuando se lo veía por la tarde. Luego los romanos fundieron ambos astros con el nombre de Mercurio.

Mercurio es el planeta más cercano al Sol y recibe unas diez veces más energía solar que la Tierra; durante el día en Mercurio se alcanzan altísimas temperaturas (T = 430 °C) que bajan muchísimo durante su noche (T = -180 °C).

Mercurio presenta fases como las de la Luna (y Venus); por lo tanto, su brillo aparente depende de la fase en que se halle y de la distancia en que se encuentre; al igual que el planeta Venus, Mercurio alcanza su máximo brillo en su fase "creciente" y no cuando aparece "lleno".

Rota sobre sí mismo lentamente, por esta causa el planeta se mueve primero de Este a Oeste del Sol; luego, por cierto lapso, de Oeste a Este para después volver a la primera dirección.


Astronomia
Foto tomada por la nave
Mariner 10, NASA


Entre los terrestres, Mercurio se destaca por ser el más pequeño y tener la menor masa y su velocidad orbital es la máxima entre todos los astros del Sistema Solar, por lo que su año es el menor.

Señalemos que Mercurio no tiene satélites a su alrededor. El albedo (relación entre la cantidad de energía luminosa recibida y reflejada) de Mercurio es tan débil como el de la Luna, algo que se interpreta como debido a que la luz solar se refleja sobre una superficie sólida, más bien que en una atmósfera; también es destacable su alta densidad, la mayor del Sistema Solar (exceptuando a la Tierra). La sonda Mariner 10 detectó que Mercurio poseía campo magnético y una atmósfera sumamente tenue.

En la superficie de Mercurio hay cráteres de aspecto y distribución similar a los de la Luna: el mayor tiene 1.300 kilómetros de diámetro; también hay llanuras y colinas. Recientemente se ha detectado la presencia de glaciares de agua en su superficie en lugares donde la luz solar no penetra jamás; algunos glaciares se encuentran en cráteres.


Venus

Venus es el astro más brillante del cielo, después de la Luna; su brillo es tan intenso que en ocasiones se lo observa a simple vista durante el día. Visible hacia el atardecer o por el amanecer recibió también dos nombres diferentes: Phosphorus como "estrella" de la mañana y Hesperus por la tarde; luego se lo llamó también Vesper por la tarde y Lucifer por la mañana; aún hoy recibe dos nombres: "lucero del alba" o "de la tarde".

Es el astro más cercano a la Tierra, con excepción de la Luna, algunos cometas y unos pocos asteroides; también es el planeta con registros más antiguos: llegan a 3.000 años A.C.

Su albedo es muy intenso, casi igual al de la nieve. Este hecho y la ausencia de configuraciones estables visibles en el disco había sugerido que Venus posee una atmósfera espesa y lo que se observan en ella es una densa capa de nubes que lo cubre completamente. Visual y fotográficamente, Venus presenta una superficie brillante, blanca y uniforme; se ven manchas que cambian rápidamente a lo largo del día indicando que se trata de nubes atmosféricas y no de accidentes permanentes superficiales. Esas nubes impiden conocer su superficie mediante telescopios; se ha podido conocerla mediante sondas espaciales que han orbitado a su alrededor, traspasado su atmósfera y descendido sobre su suelo; otro método ha sido mediante el empleo de técnicas de radar.


sistema
Foto tomada por la sonda Galileo, NASA

Sus períodos de traslación y de rotación son semejantes (aunque el de rotación es más lento), es decir su día dura aproximadamente casi lo mismo que su año. Por otra parte, cabe destacar que Venus gira al revés que los demás planetas del Sistema Solar: en un día de Venus se ve al Sol salir por el Oeste y ponerse por el Este.

El sistema de nubes que cubre permanentemente el planeta tiene densidad de hasta 100 partículas por centímetro cúbico; el componente más abundante de la capa superior de nubes son gotitas esféricas, probablemente de ácido sulfuroso. En la parte inferior, se detectaron partículas sólidas compuestas de cloro, azufre y oxígeno.

Más de la mitad de su superficie es ondulada, con una amplitud má de unos 500 m y hay cuatro regiones montañosas que llegan a los 11 km de altura. También hay cientos de cráteres: los mayores alcanzan a 500 km de diámetro.

Venus también presenta fases, similares a las de la Luna y Mercurio; por otra parte, Venus no tiene ningún satélite natural.

Tanto el tamaño como la masa de Venus son semejantes a los de la Tierra, pero su temperatura es mucho mayor; la alta temperatura detectada en la superficie venusina debe su origen al efecto invernadero, provocado principalmente por el anhídrido carbónico. Si un cuerpo absorbe energía, se calienta y emite radiación de acuerdo con su temperatura. Cuando en la atmósfera de un planeta hay gases o partículas que absorben la radiación emitida por la superficie calentada del planeta, dicha atmósfera puede resultar opaca a esa radiación. En esas condiciones la superficie no podrá irradiar hacia el exterior, ya que calienta a la atmósfera de su entorno con lo que también se calienta a sí misma. Este fenómeno se conoce como efecto invernadero.

Tierra

Se trata de un cuerpo sólido con la mayor parte de su superficie cubierta por agua líquida, aunque una parte considerable también está recubierta por agua solidificada (hielo). Las pocas regiones secas que quedan (continentes) aparecen cruzadas por montañas y salpicadas por llanuras; las zonas bañadas de agua (océanos) también muestran cadenas montañosas y, en algunas partes, profundas depresiones (fosas).

La forma aproximada de la Tierra es esférica, con un diámetro medio de 12.750 km, verificándose un leve achatamiento en la dirección de sus polos.

Respecto a la composición, los estudios del interior terrestre realizados a través del análisis de los registros de los terremotos, parecen indicar que se compone de capas sucesivas de diferentes materiales y que su centro (núcleo) podría encontrarse en estado líquido (esta afirmación no implica que sea precisamente agua su contenido).

Ya que la densidad media de la Tierra es cinco veces superior a la del agua, se considera que en el núcleo la densidad es mayor que en la superficie; esto parece indicar que el mismo estaría compuesto de materiales más pesados que los hallados en la corteza (probablemente sean hierro, cobalto y níquel).

La temperatura superficial de la Tierra varía entre límites muy estrechos de acuerdo a la zona que se considere. En ninguna parte supera el punto de ebullición del agua ( T = 100 °C) y, en general, la mayoría de las regiones se encuentran a una temperatura por encima del punto de congelación del mismo elemento ( T = 0 °C).

Rodeando la parte sólida de la Tierra, se encuentra una envoltura gaseosa denominada atmósfera, compuesta principalmente de nitrógeno, oxígeno y de una mezcla de otros elementos. Desde las naves espaciales, la superficie de la Tierra muestra una continua presencia de nubes en la atmósfera.

Los movimientos principales de la Tierra son su rotación alrededor del Sol (traslación) y el giro sobre sí misma (rotación).

Las unidades naturales de tiempo, que usamos cotidianamente, es decir el año y el día, resultan de medir el intervalo que le lleva a nuestro planeta el completar, respectivamente, cada uno de esos movimientos.

solar
Foto tomada por la Nave Apollo 17, NASA

La Tierra se desplaza alrededor del Sol con una velocidad de unos 30 km/seg, demarcando una trayectoria en el espacio (órbita) de forma elipsoidal denominada eclíptica. Este nombre tan peculiar de la órbita terrestre se debe a que los eclipses suceden sobre el plano definido por ella.

Marte

planetas

Marte, como Mercurio y Venus es conocido desde tiempos remotos; resulta tan notable por su color y brillo como por sus movimientos respecto de las estrellas. Con el telescopio, Marte aparece como un disco rosado donde son visibles períodicamente cada uno de los casquetes polares de color blanquecino y además se comprueba en sus superficie variaciones de albedo según la estación y sus condiciones atmosféricas que serían consecuencia de tormentas de polvo en sus superficie.

Marte tiene las formaciones volcánicas más altas del Sistema Solar; el monte Olimpo mide 25.000 m de altura y 700 km de diámetro en su base. Mediante las fotografías de la misión espacial Viking se verificó una diferencia de aspecto entre el hemisferio sur y norte de Marte: el norte es más bien liso, cubierto de llanuras, mientras que el sur es muy accidentado y cubierto de cráteres. Las regiones medias, de tonalidad amarillenta, posiblemente sean zonas desérticas. Sin embargo, el análisis del material arenoso de ambos hemisferios revela que son similares: volcánico con un alto contenido de hierro.

En la superficie marciana no hay agua, y los casquetes polares mencionados presentan cambios estacionales: disminuyen durante el verano marciano y aumentan hacia su invierno. La temperatura de esos casquetes indican que se trataría de nieve carbónica. El resto de la superficie está cubierta de rocas; se verificó que existe óxido de silicio y óxido férrico, el resto contiene magnesio, calcio, azufre, aluminio, cloro y titanio.

Otra de las características superficiales de Marte son sus famosos canales, descritos como trazos rectilíneos, finos y oscuros por G.Schiaparelli en 1888. Las sondas no detectaron canales pero si algunas formaciones de cauces que se habrían formado por la acción de cursos de agua; pero como en la actualidad no se detecta agua, se cree que esos cauces, que se habrían formado por corrientes líquidas que circularon por su superficie, podrían contener capas de hielo bajo ellos.

La atmósfera marciana es transparente y se ha encontrado en ella vesitigios de vapor de agua. Ocasionalmente, se observan violentas tormentas de polvo que tornan completamente opaca su atmósfera y colabora con cierto efecto de erosión sobre su superficie.

Finalmente, Marte tiene dos pequeños satélites naturales, descubiertos por A. Hall en 1877, y denominados Fobos y Deimos.

Plutón

El Sistema Solar

Este planeta, el más alejado del Sol, aún presenta ciertos aspectos inciertos ya que su gran lejanía dificulta su estudio. En líneas generales, aparece como mucho más parecido a los planetas terrestres que a los gigantes, cuyas órbitas encierra con la suya.

Del análisis de las acciones gravitatorias (perturbaciones) en las órbitas de Urano y Neptuno, los astrónomos sospecharon la existencia de un planeta trasneptuniano. Plutón fue descubierto por C. Tombaugh en 1930. Tiene un tamaño comparable con el de Mercurio y una débil atmósfera; se conoce que el metano junto con el hidrógeno son sus principales componentes. Su pequeña masa y sus bajísimas temperaturas, sugieren que los constituyentes de su atmósfera podrían encontrarse congelados sobre en superficie.

Durante parte de su recorrido alrededor del Sol, Plutón se halla dentro de la órbita de Neptuno. La inclinación de la órbita de Plutón es la mayor del Sistema Solar y su período de revolución el más largo. Finalmente, Plutón posee un satélite natural denominado Caronte. Plutón-Caronte forman el primero y el único par del Sistema Solar en rotación y traslación sincrónicas; esto es, visto desde Plutón, Caronte se ve fijo en el cielo.


Júpiter


Astronomia

En el cielo terrestre, Júpiter aparece como un objeto de apariencia estelar, en ocasiones más brillante que Sirio.

Júpiter es el planeta de mayor tamaño del Sistema Solar, el que posee mayor masa y el que rota sobre sí mismo a más alta velocidad. Su aplastamiento es considerable y está relacionado con su gran rapidez de giro. Por otra parte, Júpiter se desplaza alrededor del Sol con un periodo de 11 años y 313 dias.

La superficie de Júpiter no es visible ya que está permanente y completamente cubierta por nubes. Es imposible establecer un límite preciso entre "superficie" y "atmósfera".

Con un telescopio de mediana potencia puede observarse que Júpiter presenta regiones de diferente color paralelas a su ecuador (bandas); son zonas estacionarias de nubes en rotación. En los turbulentos límites entre bandas se forman corrientes y torbellinos.

Las nubes se clasifican según tres capas: una superior de amoníaco, una intermedia de azufre y un tercera de hielo de agua. El componente principal de la atmósfera de Júpiter es el hidrogéno, el cual se halla combinado con nitrógeno y carbono. Las sondas espaciales también detectaron algo de helio. Además de estos elementos y en menor proporción, se han hallado metano, amoníaco, agua, monóxido de carbono y acetileno, entre otros.

Sobre las bandas aparecen detalles que se mantienen en el tiempo, como la Gran Mancha Roja; su tamaño permaneció prácticamente invariable desde su detección (hace más de 300 años), aunque desapareció durante los años 1888, 1912, 1916, 1938 y 1944. Los astrónomos consideran que se trata de un ciclón de enormes dimensiones.

Las sondas Voyager registraron relámpagos en la atmósfera de Júpiter cuya presencia es favorecida por la existencia de polvo .

sistema
Foto tomada por la sonda Voyager 1, NASA,
puede apreciarse la gran Mancha Roja


Se supone que Júpiter posee un núcleo rocoso de dimensiones desconocidas y compuesto principalmente por hierro y silicatos. Se estima que la temperatura de su núcleo debe ser cercana a T = 30.000 C, mientras que su masa sería equivalente a diez veces la masa terrestre y rodeado completamente por una capa de hidrogéno metálico a 10.000 C y a una presión de un millón de atmósferas.

El análisis de las sondas espaciales, sugiere que Júpiter consiste prácticamente de material solar que no ha sufrido modificaciones desde su origen. Es de suponer que la mayor cantidad de materia que no fue condensada en el Sol, formó parte de Júpiter. Si entonces Júpiter hubiese tenido al menos 12 veces la masa que tiene hoy, hubieran podido iniciarse reacciones termonucleares en su interior, de modo similar a lo que sucede en las estrellas; desde este punto de vista, podemos decir que Júpiter puede considerarse como una estrella frustrada. Con dimensiones semiestelares, la energía interna de Júpiter, aunque muy inferior a la de las estrellas, es comparable a la que el planeta recibe del Sol.

Un anillo de pequeñas partículas sólidas rodea a Júpiter por su ecuador, extendiéndose hasta casi 53.000 km del límite de su atmósfera. Se fotografió por primera vez en 1979 y tiene una densidad casi mil millones de veces más débil que la densidad del anillo de Saturno. Por último, señalemos que Júpiter tiene más de 17 lunas.


Saturno

solar
Foto tomada por el Telescopio Espacial Hubble

Saturno fue considerado el límite exterior del Sistema Solar por muchos siglos ya que es el último planeta visible a simple vista. Desde la Tierra, se lo ve como un objeto de brillo comparable a las estrellas más brillantes, y de coloración amarillenta.

Es el planeta de más baja densidad del Sistema Solar, que, junto con su gigantesco sistema de anillos, son las únicas características que lo diferencian de Júpiter; en lo demás, Saturno presenta grandes similitudes. Como en Júpiter, el día en Saturno es muy corto y posee un gran número de satélites. Esencialmente se trata de una enorme esfera achatada de gas, comprimido bajo su propio peso; lo que vemos son nubes de elementos, condensados a las débiles Temperaturas existentes. Presenta bandas paralelas en su atmósfera, aunque de colores no tan definidos como en Júpiter.

Su modelo de estructura interna es el de un núcleo rocoso envuelto por una capa de hidrógeno metálico, recubierto a su vez por una capa líquida de hidrógeno y helio. También Saturno emite al espacio una mayor cantidad de energía que la que recibe del Sol, de ahí que también se especula con la producción de energía en su interior.

La característica histórica más notable de este planeta es su sistema de anillos. D. Cassini en 1675 descubrió dos anillos concéntricos (A) y (B), separados por una región oscura (la división de Cassini. Esta fue considerada por mucho timepo como una región vacía; las sondas espaciales encontraron que en ella existen cinco bandas débiles. Las partículas del (C) y las de esta división son bastante más oscuras que las que forman los anillos (B) y (A).

El (B) es el más brillante y abarca la mayor superficie del sistema de anillos; en detalle, son estructuras anulares brillantes y agujeros oscuros de hasta 100 km de extensión. El (A) está formado también por estructuras finas y cuerpos con dimensiones de hasta 8 m; en su interior, hay otra división..

En 1850, se encontró un tercer anillo (C), casi transparente y ubicado entre el anillo principal y el planeta; en 1969, finalmente, se observa un cuarto anillo (D), compuesto de un material parecido a polvo. El (C) envuelve al (D) y aparece como una sucesión muy ordenada de anillos anchos separados por zonas gruesas; estaría formado por cuerpos de hasta 2 metros.

Más allá, se halla el anillo (F), descubierto por la sonda Pioneer 11 a unos 3.600 km del borde del (A), entre las órbitas de dos lunas del planeta. El (F) está compuesto a su vez de tres anillos, de los cuales los dos exteriores se hallan "retorcidos".

A unos 170.000 km de Saturno se halla un delgado anillo (G), apenas visible; finalmente, entre 210.000 y 300.000 km del planeta se encuentra el anillo (E) compuesto de material muy fino.

Los anillos se extienden unos 280.000 km y en la dirección norte-sur tienen un grosor de apenas 3 km. Debido a que el sistema de anillos se halla en el plano ecuatorial del planeta, durante una revolución alrededor del sol, los anillos se ven alternativamente por su cara norte y por su cara sur; entre estas situaciones extremas, donde los anillos aparecen muy abiertos, podremos observarlos de canto: entonces desaparecen por completo, lo cual revela su pequeño espesor. El ciclo se repite cada aproximadamente unos 29 años y medio, tiempo que precisa Saturno para dar una vuelta alrededor del Sol.

Esta circunstancia determina que el sistema de anillos presente "fases", es decir, variaciones de brillo en los anillos según el ángulo bajo el cual reflejan la luz solar. Cuando los anillos están exactamente de canto hacia nosotros, son invisibles lo que sucede durante uno o dos días. Cuando la Tierra y el Sol se ubican en lados opuestos del plano de los anillos, se ve el lado oscuro de los anillos.

Se ha calculado que la masa de los anillos es 3x10-6 veces la masa de Saturno y que las partículas que los componen probablemente sean de hielo de agua con núcleos de material meteórico, con dimensiones de desde algunos micrones hasta 20 metros.

Cada una de las partículas que forman el anillo describe una,órbita alrededor de Saturno, como si fuera un satélite diminuto. Por otra parte, los anillos tienen un cierto movimiento de aproximación y retroceso en sus extremos, que indican una rotación en el mismo sentido que el planeta.

Urano y Neptuno

Urano fue el primer planeta descubierto; lo encontró accidentalmente el astrónomo William Herschel el 13 de marzo de 1781, mientras exploraba el cielo con su telescopio; en principio, Herschel sospechó primero que se trataba de un cierto tipo de cometa. Un año más tarde, se comprobó que se trataba de un planeta más alejado que Saturno; su nombre se debe a la sugerencia del astrónomo Bode.

planetas
Urano

A simple vista, Urano se presenta como una estrella en el límite de la visión a ojo desnudo y en adecuadas condiciones atmosféricas. Su forma es esférica, aunque muy achatado y de relativamente alta densidad para un planeta compuesto sólo de hidrógeno.

Su eje de rotación se encuentra casi coincidente con el plano de la órbita, encontrándose que el polo norte se halla por debajo. Se da la circunstancia de que no presenta estaciones del tipo que conocemos en la Tierra: cada polo tiene un verano y un invierno de casi 42 años. Por otra parte, su sentido de rotación es retrógrado.

Su masa, inferior a la de Saturno o Júpiter, es muy superior a cualquiera de los planetas terrestres. Su albedo es comparable al de Júpiter y Saturno y posee una atmósfera con nubes en bandas paralelas al ecuador. Debido a su lejanía, es difícil estudiar con detalles este planeta, por lo que aún no hay datos suficientes para definir su estructura interna.

En 1977, se descubrieron los anillos de Urano; se identificaron 9 anillos entre 10 km y 100 km de ancho. Se calculó que tenían una masa de 5x1018 gr y una densidad de aproximadamente 3 gr/cm3 (polvo condrítico sin cubierta de hielo).

El movimiento de Urano preocupó a los astrónomos de mediados del siglo XIX; en principio, las posiciones de Urano coincidían con las calculadas a partir de las primeras determinaciones orbitales. A posteriori, Urano comenzó a desviarse de la órbita calculada, incluso luego de haber tenido en cuenta las perturbaciones gravitatorias debidas a Saturno y a Júpiter. Algunos astrónomos atribuyeron esas diferencias a "fallas" en la ley de gravitación que tendrían lugar cuando ésta se aplicaba a grandes distancias; hubo quienes dijeron que en el espacio donde se movía Urano existía un medio resistente, frenando al planeta.

A. Bouvard fue el primero en sugerir la posibilidad de la existencia de otro mundo, cuyo acción sobre Urano sería la causa de las irregularidades detectadas entre las observaciones y la teoría. Posteriormente, el astrónomo Urbano Leverrier concluyó que se podían representar las observaciones de Urano por medio de la acción perturbadora de un nuevo planeta, de masa similar a la de Urano.

Con sus propios datos acerca del nuevo planeta, hizo cálculos sobre su posible movimiento y posición. La noche del 23 de setiembre de 1846, muy cerca del lugar indicado por Leverrier, el astrónomo de Berlín J.G. Galle descubría al nuevo planeta. Debemos destacar que Leverrier comparte los honores del descubrimiento matemático de Neptuno, con el inglés John C. Adams, ya que, aunque la observación realizada a sugerencia de Leverrier condujo al descubrimiento de Neptuno, fue Adams el primero que predijo su posición.

El Sistema Solar
Neptuno, foto tomada por
la sonda Voyager 2, NASA

Igual que había ocurrido con Urano, el planeta Neptuno había sido observado varias veces por diferentes astrónomos que lo habían confundido con una estrella.

Observado con un telescopio, Neptuno sólo se puede distinguir de las estrellas cercanas por su movimiento de noche a noche; con instrumentos algo más grandes se lo ve como un disco de coloración verde de poco más de 2" de diámetro. Este planeta tiene una gran semejanza con Urano, razón por la que se los asocia como un conjunto singular dentro del Sistema Solar. Sus atmósferas son similares: hidrógeno molecular y metano.

Neptuno presenta también anillos: son casi circulares y muy cercanos a su ecuador. El material de los anillos de Neptuno rota en la misma dirección que el planeta. Las imágenes obtenidas por las naves espaciales sugieren que las partículas de los anillos de Neptuno son más pequeñas que las del anillo de Urano.


Los satélites naturales


Como mencionamos, además de los planetas principales, el Sistema Solar está compuesto por muchos más cuerpos celestes. Alrededor de la mayoría de los planetas giran satélites, de manera similar a la Luna en torno de la Tierra. En Astronomía, el término satélite se aplica en general a aquellos objetos en rotación alrededor de un astro, este último es de mayor dimensión que el primero; ambos cuerpos están vinculados entre sí por fuerzas de gravedad recíproca.

Existe una diferenciación entre satélites naturales y artificiales. Los artificiales son los construidos por el hombre, y por lo tanto es factible, de alguna manera, de modificar su trayectoria. En las últimas décadas se han puesto en órbita una gran variedad de satélites artificiales alrededor de la Tierra y también de varios planetas.

Un satélite natural, en cambio, es cualquier astro que se encuentra desplazándose alrededor de otro; no es factible modificar sus trayectorias artificialmente.

En general, a los satélites de los planetas principales se les llama lunas, por asociación con el nombre del satélite natural de la Tierra.

Los diferentes planetas poseen distinta cantidad de lunas. El número total en el Sistema Solar es alto y aún se considera incompleto, ya que se continúa encontrándose nuevas lunas. No se conocen lunas en Mercurio ni en Venus y tampoco ningún satélite que posea una luna.

A pesar de estar acostumbrados a que la visión de nuestra Luna como un cuerpo esferoidal, debe pensarse que, en general, los satélites de los planetas principales pueden ser bien diferentes, presentar formas irregulares o ser sumamente achatados.

En la actualidad (junio de 2003) el número total de satélites conocidos en cada planeta se indica a continuación.EL total de satélites es de 128. Seguramente en los próximos años un número mayor de pequeños satélites serán descubiertos.


Astronomia

Las lunas de los planetas se mueven alrededor del mismo soportando diversas fuerzas; si los planetas fueran esferas perfectas, se desplazarían en órbitas perfectamente elípticas. Como los planetas están deformados a causa de su rotación, presentan un abultamiento ecuatorial. Este efecto, conjuntamente con las fuerzas de atracción de otras lunas del mismo planeta y la acción gravitatoria del Sol, determinan que cada satélite posea un movimiento complejo denominado movimiento perturbado.

En la siguiente tabla se indican el período sidéreo y el diámetro medio de algunas lunas de los planetas principales y de nuestra Luna.


sistema

El período sidéreo PS está dado en días y fracciones de día (terrestres) y el diámetro D en kilómetros.

Respecto al origen de estos astros se han sugerido diferentes teorías: (a) se formaron junto con el planeta principal; (b) se desprendieron del planeta principal a lo largo de su evolución; o bien (c) se trata de un cuerpo capturado por el planeta principal (por ejemplo Febe en Saturno, o bien Fobos y Deimos en Marte).

Como también se ha verificado que existen asteroides que tienen su propia luna, por ejemplo, Herculina, un planetita de 217 km de diámetro con una luna de apenas 50 km. Hay quienes sospechan que el propio Plutón y su luna, son en realidad dos asteroides bastante grandes muy alejados del resto, en los confines del Sistema Solar.

El análisis detallado de las fotografías y los datos astrofísicos enviados por naves espaciales, han mostrado que los satélites son cuerpos opacos y sólidos, muy diferentes unos de otros. Algunos de ellos son tan grandes como el planeta Mercurio.

Excepto nuestra luna, los satélites planetarios no son visibles a simple vista y sólo las cuatro mayores lunas de Júpiter, cuyos nombres son Europa, Io, Calixto y Ganímedes, se pueden observar a través de binoculares o con un pequeño telescopio. Los restantes satélites precisan de poderosos instrumentos para ser detectados.

La Luna

solar

El aspecto que presenta la Luna en el cielo cambia continuamente en un intervalo de 29,5 días; es la duración del mes (calendario), que se ha establecido por el tiempo que demora la Luna en completar su ciclo de fases al trasladarse alrededor de la Tierra.

El cambio de aspecto lunar se debe a las variaciones de su superficie iluminada por el Sol. Cuando el disco lunar se encuentra en las cercanías del disco solar no aparece iluminado o sólo brilla un pequeño sector (Luna Nueva); éste irá ampliándose a medida que transcurren los días y se aleja del Sol. En la puesta de Sol y aparecer simultáneamente la Luna, se habrá completado el brillo de todo el disco lunar; entonces se dice que es Luna Llena. Posteriormente, se podrá observar que la sección brillante del disco disminuirá de tamaño y cambiará de forma a medida que se acerca nuevamente al Sol hasta que, en sus cercanías, prácticamente desaparece de la visión (Luna Nueva). De este modo se repite una rutina de transformaciones denominada ciclo de las fases lunares.

planetas

En las cercanías de la Luna Nueva el disco lunar aparece suavemente iluminado: es la luz cenicienta debido a que la Tierra refleja sobre la Luna la radiación que recibe del Sol.

La Luna es un cuerpo sólido de forma esférica, con un diámetro de unos 3.400 km (que corresponde a una cuarta parte del diámetro terrestre), y con una densidad similar a la de las capas externas de la corteza de la Tierra.

A simple vista, en su superficie se distinguen zonas claras y otras oscuras; con binoculares o con un pequeño telescopio, las regiones oscuras se ven lisas y sugieren haber sido cubiertas por material volcánico, hoy ya solidificado. Son las denominadas marias. Las zonas claras, en cambio, aparecen cubiertas casi en su totalidad por cráteres, que se suponen de impacto. Se aprecian cráteres de una gran variedad de tamaños, inclusive unos superpuestos sobre otros, en número realmente enorme. Uno de los mayores es el bautizado Clavius, de 200 km de diámetro; sin embargo, los más frecuentes son de unos 20 km a 30 km de diámetro. Como consecuencia de la ausencia de erosión en la Luna, los cráteres se conservan tal como cuando se formaron. Un hecho interesante que han mostrado los satélites artificiales que han circundado la Luna, es que la cara no visible aparece cubierta de cráteres, no presentando regiones lisas como los marias.

También hay cadenas de montañas en la cara visible, algunas bastante elevadas (como las terrestres) que se ubican hacia los bordes exteriores de las zonas planas.

El color del suelo lunar depende mucho del ángulo de incidencia de los rayos solares sobre su superficie. En realidad, la Luna es bastante oscura según ha sido confirmado por los astronautas, además de las imágenes recogidas por las diferentes naves que la sobrevolaron. Objetivamente, el color de la Luna es de un amarillo oscuro, similar al de la arena húmeda; el hecho de que la veamos a simple vista tan clara y brillante, se debe sólo al contraste de su brillo con el fondo oscuro del cielo que la rodea.

La mayoría de las piedras lunares recogidas por los astronautas son negras, aunque se han percibido otras de color amarillo y también marrones. Respecto a su naturaleza, el estudio de las piedras indican diferencias notables respecto de la composición de las muestras terrestres, aunque su edad es similar a las más antiguas rocas testrestres.

La Luna no posee atmósfera. Una consecuencia llamativa de ello es que la línea que en su superficie separa la región iluminada de la oscura (llamada terminador) es perfectamente nítida (así se aprecia desde la Tierra). Si tuviera atmósfera el terminador sería borroso, y mostraría un ligero resplandor como el que se observa en los crepúsculos terrestres.

La ausencia de una atmósfera en la Luna es consecuencia de que su masa es menor que la terrestre, y en consecuencia su atracción gravitatoria no alcanza la fuerza suficiente para retener los gases que componen la atmósfera lunar. Si alguna vez existió una atmósfera en la Luna, hace muchísimo tiempo que se disipó en el espacio.

Dos de los movimientos principales de la Luna son: su giro alrededor de la Tierra (traslación lunar); y la rotación sobre sí misma (rotación lunar), con la particularidad de que ambos lo cumplen en aproximadamente el mismo intervalo de tiempo. Como consecuencia de ello, la Luna presenta siempre la misma porción de superficie mirando a la Tierra, de tal manera que la otra cara permanece permanentemente invisible para un observador en cualquier lugar de la Tierra. Por último, el tercer movimiento de la Luna es el que realiza alrededor del Sol, acompañando la traslación de la Tierra (el año lunar coincide, aproximadamente, con el año terrestre).

La Luna ejerce una continua influencia física sobre nuestro planeta: un ejemplo conocido es el fenómeno de las mareas; esto es, la fuerza de atracción gravitatoria lunar produce una leve deformación en la superficie terrrestre, la cual se evidencia por el flujo y reflujo continuo en las aguas de los océanos y mares de la Tierra.

Para un observador ubicado en algún de la Tierra, cercano a un océano, se observará una marea máxima (pleamar); un poco después que la Luna alcance su posición más alta sobre el horizonte. Unas seis horas más tarde se verá una marea mínima (bajamar). La misma pleamar se observará cuando la Luna se halle invisible desde el mismo sitio, ubicada en el punto más bajo por debajo del horizonte (esto sucederá en algo más de 12 horas después de la pleamar anterior). Como resultado final, en el transcurso de un poco más de un día, se tendrá siempre dos mareas máximas y dos mínimas.

Otra acción de las mareas es la variación a largo plazo de la distancia media entre la Tierra y la Luna. Este fenómeno es consecuencia del principio de acción y reacción: la Tierra reacciona al freno impuesto por las mareas, impulsando a la Luna hacia adelante y, por lo tanto, provocando un ensanchamiento gradual de su órbita.

Al respecto, los astronautas de las 7 misiones APOLLO , entre 1969 y 1972, dejaron en la superficie de la Luna varias configuraciones de espejitos que reflejan la luz de brevísimos impulsos láser enviados desde observatorios terrestres. El tiempo de ida y vuelta, multiplicado por la velocidad de la luz, da como resultado la distancia entre el aparato láser y los espejitos en la Luna. Estas mediciones han permitido comprobar que la órbita lunar se "ensancha" unos 3 cm por año.


Los asteroides


El Sistema Solar aún contiene otros cuerpos, en general más pequeños que los planetas o sus lunas: se trata de los asteroides o pequeños planetas. En el siglo XVIII, cuando todavía el Sistema Solar terminaba en Saturno, se consideraba válida una expresión matemática que señalaba una relación entre el orden de cada planeta respecto del Sol y su distancia al mismo. Cuando el planeta Urano fue descubierto, su ubicación en el Sistema Solar resultaba de acuerdo con lo establecido en esa regla (ley de Bode).

De esa ley podía deducirse además que debía existir algún astro entre Marte y Júpiter, aunque allí no se había observado ninguno. La incógnita se mantuvo hasta la noche del 1 de enero de 1801, cuando el astrónomo italiano Piazzi descubrió con un rudimentario telescopio un nuevo cuerpo en esa región, al que llamó Ceres; luego se determinó que se trata de una pequeño planeta más o menos esférico de unos 1.000 km de diámetro. Se había cumplido una vez más la ley de Bode.

Sucedió entonces que, en 1802, se descubrió otro en la misma zona, Pallas; luego, en 1804, otro más: Juno. La cuenta se engrosó en 1807, cuando fue hallado otro planetita: Vesta; el siguiente en el orden de descubrimiento fue Astrae, ya en 1845.

Todos los que fueron encontrándose resultaron mucho más pequeños que Ceres: Pallas (490 km), Vesta (400 km); y Juno (190 km); el resto tiene dimensiones desde unas pocas decenas de kilómetros a cientos de metros, o quizás menos. Actualmente, Hator es el más pequeño conocido: 500 m. En razón de sus reducidas dimensiones se los denominó "pequeños planetas" y como, al ser observados telescópicamente, tienen una apariencia estelar, se los designó asteroides, que literalmente significa "con forma de estrella".

Únicamente son esféricos aquellos asteroides de mayores dimensiones; el resto tiene formas bastantes irregulares. En particular, Héctor tiene forma de reloj de arena (tal vez sean dos cuerpos unidos en uno solo).

Se ha estimado que la masa de todos los asteroides juntos sería de apenas el 1% de la masa de la Tierra. Las observaciones indican que sus superficies son rugosas y, en algunos casos, con diferentes clases de asimetrías detectadas mediante las variaciones irregulares de sus brillos.

El Sistema Solar
Asteroide Gaspra, Proyecto Galileo,
NASA


Se conocen las órbitas de alrededor de 15.000 asteroides. Se descubren, sin embargo, muchos miles más mediante largas exposiciones fotográficas, pero nose tienen datos suficientes para calcular las trayectorias de todos ellos.
Si bien la mayoría de los asteroides se encuentran entre Marte y Júpiter, se hallaron otros ubicados en lugares alejados de esa zona del Sistema Solar. El planetita Hidalgo se acerca bastante a Saturno, y Cirón, por su parte, gira en órbita entre Saturno y Urano. Otros asteroides, pasan muy cerca del Sol (se los llama objetos Apolo) y algunos de ellos tienen órbitas tales que en su rotación alrededor del Sol se aproximan a la Tierra. Otros, en cambio, se alejan tanto como Neptuno y Plutón.

Júpiter ejerce una fuerte influencia gravitatoria sobre los asteroides; puede decirse que algunos han sido "capturados" por la gravedad de Júpiter. Se ha observado que unos 20 planetitas están ubicados a la misma distancia del Sol que Júpiter, con períodos de traslación semejantes al de ese planeta; se los llamó Troyanos, y los nombres individuales de los objetos que forman este grupo recuerdan a los héroes griegos mencionados por Homero en la Ilíada y la Odisea. Los asteroides Troyanos se ubican en uno de los vértices de un triángulo equilátero con vértices en el Sol y Júpiter.

Si no existiera la influencia gravitatoria de los grandes planetas (fundamentalmente Saturno y Júpiter) sobre las órbitas de los asteroides, las trayectorias de los planetitas tendrían que encontrarse, después de cierto tiempo, en el mismo lugar del espacio. Pero esa situación no se produce, justamente por efecto de esas perturbaciones gravitaciones, las cuales continuamente modifican sus órbitas.

Los astrónomos han agrupado a los asteroides en conjuntos llamados familias, cuyos miembros tienen órbitas semejantes. Esta situación puede brindar una pista sobre el origen de los asteroides, ya que el hecho de que muchos de ellos tengan aproximadamente la misma órbita podría ser debido a la fragmentación natural de un cuerpo planetario más grande, o quizás a que están relacionados entre sí por algún otro origen común.

Los cometas

Astronomia

Estos astros aparecen repentinamente y sólo algunos pocos son visibles a simple vista mostrando colas notables y llamativas.

El más famoso de todos es el cometa Halley, que aparece cada 76 años. Este cometa lleva su nombre por el astrónomo E. Halley, quien pudo verificar que sus apariciones eran periódicas a partir de registros de observación anteriores; Halley había observado "su" cometa en 1682 y predijo su retorno para 1758.

Ha sido posible determinar que la observación más antigua conocida del cometa Halley es del año 467 AC. Su último pasaje por las cercanías del Sol se produjo en febrero de 1986 y el próximo se producirá en el año 2062.

Todos los cometas forman parte del Sistema Solar, y algunos de ellos describen órbitas elípticas tan elongadas que sus períodos de revolución son muy largos: decenas o cientos de años.

Cada año se observan de una a dos docenas de cometas pasando por las cercanías del Sol; sin embargo, aún en esas condiciones de proximidad, sólo ocasionalmente un cometa llega a ser tan brillante como para ser observado a simple vista, sin la ayuda de un telescopio.

Un cometa está constituido de una región brillante y pequeña, de unos pocos kilómetros de diámetro, denominada "cabeza del cometa". En ella se halla una zona central (núcleo); que contiene elementos congelados, entre los cuales el más abundante parece ser hielo (de agua), dióxido de carbono y monóxido de carbono, y quizás algo de metano y amoníaco.

Distribuidas entre las moléculas de la cabeza del cometa hay partículas de polvo, y por esta razón se dice que el núcleo es una bola sucia de hielo.

A grandes distancias del Sol el cometa se halla inactivo y sólo refleja la luz solar; pero cuando en su trayectoria se aproxima al Sol, el material del núcleo se calienta y es disociado por la radiación solar.

De modo espectacular, de la cabellera emergen, empujadas por la intensa radiación solar, dos "colas" tenues y brillantes: una de gas y otra de polvo, extendiéndose millones de kilómetros. Los astrónomos sugieren que los cometas retienen, en forma de hielo y polvo, la composición de la nebulosa primitiva con que se formó el Sistema Solar y de la cual se condensaron luego los planetas y sus lunas. Por esta razón el estudio de los cometas puede dar indicios de las características de aquella nube primordial.


Meteoros

sistema

En las noches claras se observa que en forma repentina un punto evemente brillante del cielo se desplaza rápidamente; en pocos segundos desaparece de la visión: son las llamadas estrellas fugaces o meteoros.

Se trata de partículas de polvo de muy pequeño tamaño que al penetrar en la atmósfera terrestre, se queman rápidamente por el roce con os gases de la misma, lo que sucede a una altura entre 60 y 120 km. Algunos meteoros, aquellos de mayores imensiones y pesos apreciables, son más brillantes y llegan a describir más largas trayectorias, mostrándose por más tiempo. En una noche despejada y alejado de la iluminación de las ciudades se pueden observar una media docena por hora. Al final de la noche se alcanzan a ver más meteoros que al comienzo

Pero hay épocas del año en que desde un cierto lugar de la Tierra, el cielo se llena de meteoros formando verdaderas "lluvias de estrellas fugaces", las que suelen durar unas horas o bien unos días. Por un efecto de perspectiva, para el observador terrestre, todos los meteoros de una lluvia parecen emerger de un único sitio del cielo, llamado "punto radiante".

Las lluvias de meteoros reciben el nombre de la constelación donde aparece el mencionado punto radiante. Por ejemplo, las Leónidas es una lluvia de estrellas que ocurre hacia la constelación de Leo; este fenómeno aparece todos los años en la misma fecha, a mediados de Noviembre, aunque resulta particularmente abundante en meteoros cada 33 años. El 13 de noviembre de 1833 se produjo una de las lluvias más espectaculares de la época moderna: se observón unas 200.000 estrellas fugaces por hora.

Se ha acumulado evidencia de que estas lluvias se vinculan con los restos de cometas. Es decir, al aproximarse los cometas al Sol se han desintegrado, dejando parte de su polvo en forma de una tenue nube de partículas.

Ese polvo describe una trayectoria alrededor del Sol de la misma manera que los planetas, y por lo tanto también se lo considera miembro del Sistema Solar. Cuando la Tierra atraviesa la región de la nube de polvo, las partículas caen en la atmósfera provocando esa enorme cantidad de estrellas fugaces. Debido al movimiento periódico de la Tierra alrededor del Sol, el encuentro con la nube y las consecuentes lluvias de estrellas, suceden aproximadamente en la misma fecha de cada año.

Por otra parte, en raras ocasiones, al penetrar en la atmósfera y antes de impactar contra el suelo, también se observa que los meteoros explotan y resultan tan brillantes como, por ejemplo, la Luna Llena. En oportunidades, si son espectacularmente brillantes, se los puede ver durante el día; a veces aparece un meteoro que en su trayectoria en el cielo deja una estela brillante y que al desintegrarse puede producir fuertes ruidos: cuando sucede un fenómeno como éste, a dicho meteoro se lo denomina bólido. Si además los meteoros son lo suficientemente grandes, antes de quemarse totalmente atravesando la atmósfera pueden llegar a impactar la superficie terrestre: entonces se los denomina meteoritos.

Si se trata de rocas de grandes dimensiones (fragmentos de asteroides o núcleos de cometas), en el choque pueden producir un cráter de impacto. Algunos de éstos cráteres se pueden advertir en la superficie terrestre, aunque muy afectados por la erosión. Se conocen unos 160 cráteres en toda la tierra.

Fuentes de Información - El Sistema Solar

Dar puntos
10 Puntos
Votos: 1 - T!score: 10/10
  • 0 Seguidores
  • 11.978 Visitas
  • 2 Favoritos

2 comentarios - El Sistema Solar

@AnderTabarez Hace más de 1 año +2
solar
@MatuMoBar99 Hace más de 1 año