Singularidades

Singularidades espacio temporales


Hola taringueros... Hace rato que estoy leyendo "Historia del tiempo" de Stephen Hawkin y me interesó mucho el concepto de las singularidades espacio temporales, así que decidí investigar sobre el tema y aprender un poco más de fisica, y se los muestro

Una singularidad, de modo informal y desde un punto de vista físico, puede definirse como una zona del espacio-tiempo donde no se puede definir alguna magnitud física relacionada con los campos gravitatorios, tales como la curvatura, u otras. Numerosos ejemplos de singularidades aparecen en situaciones realistas en el marco de la Relatividad General en soluciones de las ecuaciones de Einstein, entre los que cabe citar la descripción de agujeros negros (como puede ser la métrica de Schwarzschild) o a la descripción del origen del universo (métrica de Robertson-Walker).

Desde el punto de vista matemático, adoptar una definición de singularidad puede ser complicado, pues si pensamos en puntos en que el tensor métrico no está definido o no es diferenciable, estaremos hablando de puntos que automáticamente no pertenecen al espaciotiempo. Para definir una singularidad deberemos buscar las huellas que estos puntos excluidos dejan en el tejido del espaciotiempo. Podemos pensar en varios tipos de comportamientos extraños:

* Geodésicas temporales (o nulas) que tras un tiempo propio (o parámetro afín) no pueden prolongarse (lo que se llama incompletitud de geodésicas causales).
* Valores de curvatura que se hacen arbitrariamente grandes cerca del punto excluido (lo que se denomina singularidad de curvatura).

Tipos de singularidades:
Las singularidades pueden ser, en sus aspectos más generales;


* De coordenadas: Son el resultado de haber escogido un mal sistema de coordenadas. Algunas de estas singularidades de coordenadas sí que indican lugares físicos que sí son especiales. Por ejemplo en la métrica de Schwarzschild, la singularidad de coordenadas en Singularidades representa el horizonte de sucesos.
* Físicas: Son singularidades espaciotemporales de pleno derecho. Se diferencia en las de coordenadas porque en algunas de las contracciones del tensor de curvatura, éste diverge (ciencia, etc)

Geométricamente las singularidades físicas pueden ser:

* Hipersuperficies abiertas: Este tipo de singularidad podemos encontrarlas en agujeros negros que no han conservado el momento angular como es el caso de un agujero negro de Schwarzschild o un agujero negro de Reissner-Nordstrøm.
* Hipersuperficies cerradas: Como la singularidad toroidal o en forma de anillo, que normalmente hace su aparición en agujeros negros que han conservado su momento angular, como puede ser el caso de un agujero negro de Kerr o un agujero negro de Kerr-Newman, aquí la materia, debido al giro, deja un espacio al medio formando una estructura parecida a la de una rosquilla.

Según su carácter las singularidades físicas pueden ser:

relatividad

* Singularidades temporales, como la que se encuentra en un agujero de Schwarzschild en la que una partícula deja de existir por cierto instante de tiempo; dependiendo de su velocidad, las partículas rápidas tardan más en alcanzar la singularidad mientras que las más lentas desaparecen antes. Este tipo de singularidad son inevitables, ya que tarde o temprano todas las partículas deben atravesar la hipersuperficie temporal singular.
* Singularidades espaciales, como la que se encuentra en agujeros de Reissner-Nordstrom, Kerr y Kerr-Newman. Al ser hipersuperficies espaciales una partícula puede escapar de ellas y por tanto se trata de singularidades evitables.

Según la visibilidad para observadores asintóticamente inerciales alejados de la región de agujero negro (espacio-tiempo de Minkowski) éstas pueden ser:

* Singularidades desnudas: existen casos en los agujeros negros donde debido a altas cargas o velocidades de giro, la zona que rodea a la singularidad desaparece (en otras palabras el horizonte de sucesos) dejando a ésta visible en el universo que conocemos. Se supone que este caso está prohibido por la regla del censor cósmico, que establece que toda singularidad debe estar separada del espacio.
* Singularidades dentro de agujeros negros. Dicho de otro modo, la materia se comprime hasta ocupar una región inimaginablemente pequeña o singular, cuya densidad en su interior resulta infinita. Es decir que todo aquello que cae dentro del horizonte de sucesos es tragado, devorado por un punto que podríamos denominar "sin retorno", y esto es tan así que ni la luz puede escapar a este fenómeno celeste. No puede escapar porque la fuerza de la gravedad es tan grande que ni siquiera la luz viajando a 300.000 km/s lo consigue. Y según la teoría de la Relatividad de Einstein, como nada puede viajar a una velocidad mayor que la de la luz, nada puede escapar.

Teoremas de singularidades

Teoría

Los teoremas sobre singularidades, debidos a Stephen Hawking y Roger Penrose, predicen la ocurrencia de singularidades bajo condiciones muy generales sobre la forma y características del espacio-tiempo.

Expansión del universo y Big Bang

singularidad

El primero de los teoremas, que se enuncia a continuación, parece aplicable a nuestro universo; informalmente afirma que si tenemos un espacio-tiempo globalmente hiperbólico en expansión, entonces el universo empezó a existir a partir de una singularidad (Big Bang) hace un tiempo finito:

Teorema 1. Sea (M,g) un espacio tiempo globalmente hiperbólico que cumple scriptstyle R_{ab}xi^axi^b ge 0 para todos los vectores temporales ξa (tal como sucedería si las ecuaciones de campo de Einstein se satisface cumpliéndose la condición fuerte de la energía para la materia). Supongamos que existe una hipersuperficie de Cauchy espacial Σ (y de clase al menos C²) para la cual la traza de la curvatura intrínseca satisface K < C < 0, donde C es una cierta constante. Entonces ninguna curva temporal partiendo de Σ y dirigida hacia el pasado puede tener una longitud mayor que 3/|C|. En particular, todas las geodésicas temporales hacia el pasado son incompletas.

El teorema anterior por tanto es el enunciado matemático que bajo las condiciones observadas en nuestro universo, en el que es válida la ley de Hubble, y admitiendo la validez de la teoría de la Relatividad general el universo debió empezar en algún momento.

Agujeros negros y singularidades

El siguiente teorema relaciona la ocurrencia de "superficies atrapadas" con la presencia de singularidades. Puesto que en un agujero negro de Schwarzschild, y presumible agujeros con geometrías similares, ocurren superficies atrapadas, el siguiente teorema predice la ocurrencia de singularidades en el interior de una clase muy amplia de agujeros negros. Una superficie atrapada una variedad riemanniana de dos dimensiones compacta que tiene la propiedad de que tanto su futuro causal como su pasado causal tiene en todo punto una expansión negativa. No es complicado probar que cualquier esfera, de hecho cualquier superficie cerrada contenida en una esfera, dentro de la región de agujero negro de un espacio-tiempo de Schwarzschild es una superficie atrapada, y por tanto en dicha región debe aparecer una singularidad. El enunciado de este teorema, debido a Roger Penrose (1965), es el siguiente:

Teorema 2. Sea (M,g) un espacio-tiempo globalmente hiperbólico en el que Singularidades para todos los vectores de tipo luz ka (tal como sucedería si las ecuaciones de campo de Einstein se satisface cumpliéndose la condición fuerte o la condición débil de la energía, para la materia de dicho espacio-tiempo). Supongamos que existe una hipersuperficie de Cauchy espacial Σ (y de clase al menos C²) y una superficie atrapada y sea θ0 el valor máximo de la expansión sobre ella, si θ0 < 0; entonces existe al menos una geodésica de tipo luz, inextendible hacia el futuro, que además será ortogonal a la superficie atrapada. Además el valor de parámetro afín hasta el punto a partir del cual no es extensible es inferior a 2/|θ0|.

La existencia de una geodésica de tipo luz inextensible, implica que existirá un fotón que saliendo de dicha superficie tras un tiempo de viaje proporcional a 2/c|θ0| se topará con una singularidad temporal futura. Aunque desconocemos la naturaleza física real de las singularidades por carecer de una teoría cuántica de la gravedad el fotón o bien "desaparecerá" o bien experimentará algún fenómeno asociado a dicha teoría de la gravedad cuántica cuya naturaleza desconocemos.

Para la cual, la traza de la curvatura intrínseca satisface K < C < 0, donde C es una cierta constante. Entonces ninguna curva temporal partiendo de Σ y dirigida hacia el pasado puede tener una longitud mayor que 3/|C|. En particular, todas las geodésicas temporales hacia el pasado son incompletas.

Conservación del área de agujero negro

ciencia

Aunque sin ser estrictamente teoremas de singularidades existen una colección de resultados probados por Hawking (1971) que establecen que, en el marco de la teoría general de la relatividad:

* Un agujero negro conexo no puede desaparecer o dividirse en dos. Por tanto si dos agujeros negros colisionaran, tras su interacción necesariamente quedarían fusionados.
* El área total de agujeros negros del universo es una función monótona creciente, más concretamente el área del horizonte de sucesos de dos agujeros en colisión es mayor o igual que la suma de áreas originales.
* La evolución temporal de una superificie atrapada en una región de agujero negro, quedará por siempre contenida en dicho agujero negro.

Los teoremas anteriores son importantes porque garantizan, que aún en situaciones reales donde los cálculos exactos resultan complicados o imposibles, las propiedades topológicas de un espacio-tiempo que contiene agujeros negros garantizan ciertos hechos, por complicada que sea la geometría. Naturalmente sabemos que en una teoría cuántica de la gravedad los dos primeros resultados, probablemente no se mantienen. El propio Hawking sugirió que la emisión de radiación Hawking es un proceso mecano-cuántico a través del cual un agujero negro podría perder área o evaporarse; por lo que, los resultados anteriores son sólo las predicciones de la teoría general de la relatividad.

Ocurrencia de singularidades:

relatividad

Tanto la descripción del espacio-tiempo como de la materia que hacen las teorías científicas, no pueden describir la singularidad. De hecho, la teoría general de la relatividad sólo da una descripción adecuada de la gravitación y espacio-tiempo a escalas mayores que la longitud de Planck lP:

Teoría


Donde: singularidad es la constante de Planck reducida, Singularidades, constante de gravitación universal, ciencia, es la velocidad de la luz.

De ese límite cuántico se debe esperar que igualmente la teoría de la relatividad deje de ser adecuada cuando predice una curvatura (warp) del orden de lP-2 cosa que sucede muy cerca de las singularidades de curvatura como las existentes dentro de los diversos tipos de agujeros negros.


Con el fin de hacer que se entienda parte de lo anterior, lo marqué en negrita y lo explico aquí abajo:

Horizonte de sucesos: se refiere a una hipersuperficie frontera del espacio-tiempo, tal que los eventos a un lado de ella no pueden afectar a un observador situado al otro lado. Obsérvese que esta relación no tiene por que ser simétrica o biyectiva, es decir, si A y B son las dos regiones del espacio tiempo en que el horizonte de eventos divide el espacio, A puede no ser afectada por los eventos dentro de B, pero los eventos de B generalmente sí son afectados por los eventos en A. Por dar un ejemplo concreto, la luz emitida desde uno de los lados del horizonte de eventos jamás podría alcanzar a un observador situado al otro lado.
Existen diversos tipos de horizontes de eventos, y estos pueden aparecer en diversas circunstancias. Una de ellas particularmente importante sucede en presencia de agujeros negros, aunque este no es el único tipo de horizonte de eventos posibles, existiendo además horizontes de Cauchy, horizontes de Killing, horizontes de partícula u horizontes cosmológicos.

Ley de Hubble: La ley de Hubble es una ley de cosmología física que establece que el corrimiento al rojo de una galaxia es proporcional a la distancia a la que ésta se encuentra.

La ley fue formulada por Edwin Hubble y su colaborador Milton Humason en 1929 después de cerca de una década de observaciones. Es considerada como la primera evidencia observacional del paradigma de la expansión del universo y actualmente sirve como una de las piezas más citadas como prueba de soporte del Big Bang, según la Ley de Hubble, una medida de la inercia de la expansión del universo viene dada por la Constante de Hubble. A partir de esta relación observacional se puede inferir que las galaxias se alejan unas de otras a una velocidad proporcional a su distancia, relación más general que se conoce como relación velocidad-distancia y que a veces es confundida con la ley de Hubble. Los cálculos más recientes de la constante, utilizando los datos del satélite WMAP, empezaron en 2003, permitieron dar el valor de 71 ± 4(km/s)/Mpc para esta constante. En 2006 los nuevos datos aportados por este satélite dieron el valor de 70 (km/s)/Mpc, +2.4/-3.2. De acuerdo con estos valores, el universo tiene una edad próxima a los 14.000 millones de años. En agosto de 2006, una medida menos precisa se obtuvo independientemente utilizando datos del Observatorio de rayos X Chandra orbital de la NASA: 77 ± 15%(km/s)/Mpc.

Radiación Hawkin: La radiación de Hawking es un tipo de radiación producida en el horizonte de sucesos de un agujero negro y debida plenamente a efectos de tipo cuántico. La radiación de Hawking recibe su nombre del físico inglés Stephen Hawking quien postuló su existencia por primera vez en 1976 describiendo las propiedades de tal radiación y obteniendo algunos de los primeros resultados en gravedad cuántica. El trabajo de Hawking fue posterior a su visita a Moscú en 1973, donde los científicos rusos Yakov Zeldovich y Alexander Starobinsky le demostraron que de acuerdo con el principio de incertidumbre de la mecánica cuántica los agujeros negros en rotación deberían crear y emitir partículas.
Posteriormente Paul Davies y Bill Unruh probaron que un observador acelerado u observador de Rindler en un espacio-tiempo plano de Minkowski también detectaría radiación de tipo Hawking.

Longitud de Planck: La longitud de Planck (ℓP) es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica. Una medida inferior previsiblemente no puede ser tratada adecuadamente en los modelos de física actuales debido a la aparición de efectos de gravedad cuántica.

La longitud de Planck forma parte del sistema de unidades natural, y se calcula a partir de tres constantes fundamentales, la velocidad de la luz, la constante de Planck y la constante gravitacional. Equivale a la distancia que recorre un fotón, viajando a la velocidad de la luz, en el tiempo de Planck.

Constante de Planck: La constante de Planck, simbolizada con la letra h (o bien ħ=h/2π, en cuyo caso se conoce como constante reducida de Planck), es una constante física que representa al cuanto elemental de acción. Es la relación entre la cantidad de energía y de frecuencia asociadas a un cuanto o a una partícula. Desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, Max Planck, uno de los padres de dicha teoría.

La constante de Planck relaciona la energía E de los fotones con la frecuencia ν de la onda lumínica (letra griega Nu o Ni) según la fórmula:

relatividad

Dado que la frecuencia ν, longitud de onda λ, y la velocidad de la luz c están relacionados por ν λ = c, la constante de Planck también puede ser expresada como:

Teoría


Espero que les haya interesado y que lo hayan entendido. No le puse las ecuaciones que corresponden a las consatantes y las longitudes poeque se van a complicar mucho. Pero si quieren las pongo en otro post. Comenten

4 comentarios - Singularidades

@Emir619 +3
Singularity buenismo juego me acordaste, lo wa jugar otra ves

singularidad
@jeka-9-designs
joder es muy interesante, peor no entendí una mierda de las fórmulas xddd