CLASIFICACION DE LAS FUNCIONES

Función Inyectiva:

Una función es inyectiva si cada f(x) en el recorrido es la imagen de exactamente un único elemento del dominio. En otras palabras, de todos los pares (x,y) pertenecientes a la función, las y no se repiten.

Para determinar si una función es inyectiva, graficamos la función por medio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no.

Ejemplo:



Función Sobreyectiva:

Sea f una función de A en B , f es una función epiyectiva (tambien llamada sobreyectiva) , si y sólo si cada elemento de B es imagen de al menos un elemento de A , bajo f .

A elementos diferentes en un conjunto de partida le corresponden elementos iguales en un conjunto de llegada. Es decir, si todo elemento R es imagen de algún elemento X del dominio.

Ejemplo:

A = { a , e , i , o , u }

B = { 1 , 3 , 5 , 7 }

f = { ( a , 1 ) , ( e , 7 ) , ( i , 3 ) , ( o , 5 ) , ( u , 7 ) }

Simbólicamente:

f: A B es biyectiva Û f es inyectiva y f es sobreyectiva

Ejemplo:

Función Biyectiva:

Sea f una función de A en B , f es una función biyectiva , si y sólo si f es sobreyectiva e inyectiva a la vez .

Si cada elemento de B es imagen de un solo elemento de A, diremos que la función es Inyectiva. En cambio, la función es Sobreyectiva cuando todo elemento de B es imagen de, al menos, un elemento de A. Cuando se cumplen simultáneamente las dos condiciones tenemos una función BIYECTIVA.

Ejemplo:

A = { a , e , i , o , u }

B = { 1 , 3 , 5 , 7 , 9 }

f = { ( a , 5 ) , ( e , 1 ) , ( i , 9 ) , ( o , 3 ) , ( u , 7 ) }

Teorema:

Si f es biyectiva , entonces su inversa f - 1 es también una función y además biyectiva.

Ejemplo:

Función Par:

Una función f: R!R es par si se verifica que

" x " R vale f(-x) = f(x)

Si f: R!R es una función par, entonces su gráfico es lateralmente simétrico respecto del eje vertical. “Simetría axial respecto de un eje o recta” (el dominio tiene que ser un conjunto simetrico respecto al origen)

Se dice que una función es par si f(x) = f(-x)

Ejemplo: La función y = x2 es par pues se obtienen los mismos valores de y independientemente del signo de x.

La función f(x)=x2 es par ya que f(-x) = (-x)2 =x2



Función Impar:

Una función f: R!R es impar si se verifica que

" x " R vale f(-x) = -f(x)

Si f: R!R es una función impar, entonces su gráfico es simétrico respecto del origen de coordenadas. “Simetría central respecto de un punto”. (el dominio tiene que ser un conjunto simetrico respecto al origen)

En el caso de que f(x) = -f(-x) se dice que la función es impar. Muchas funciones reales no son pares ni impares.

Ejemplo: La función y(x)=x es impar ya que: f(-x) = -x pero como f(x) = x entonces: f(-x) = - f(x).



Función Creciente:

Una función es creciente en un intervalo [a,b] si al tomar dos puntos cualesquiera del mismo, x1 y x2, con la condición x1 £ x2, se verifica que

f( x1 ) < f( x2 ).



Se dice estrictamente creciente si de x1 < x2 se deduce que f(x1) < f(x2).

Una función f se dice que es creciente si al considerar dos puntos de su gráfica, (x1, f(x1) ) y ( x2, f(x2) ) con

x1

<

x2

Se tiene que

f(x1)

<

f(x2).

Prevalece la relación <

Una función es creciente en un punto a si existe un intervalo abierto



f(x) £ f(a) si x pertenece a (a - e, a) y

f(x) ³ f(a) si x pertenece a (a, a + e).

comenten
dejen puntos si consideran bueno el aporte.