Curiosidades Matemáticas


142857

Es curioso en muchos sentidos. Vamos a ver el primer ejemplo:
Multiplicamos 142857 por 7 y nos da cómo resultado un número muy curioso: 7 * 142857 = 999999

Segundo ejemplo:
Multiplicamos 142857 por 2, 3, 4, 5, 6 y así sucesivamente y nos da cómo resultado una serie de números que contienen los mismos dígitos en el mismo orden, cómo se ve a continuación:

1 *142857 = 142857
2 * 142857 = 285714
3 * 142857 = 428571
4 * 142857 = 571428
5 * 142857 = 714285
6 * 142857 = 857142

Tercer ejemplo: En el primer ejemplo vemos que el 7 tiene una relación especial con 142857 basta con comprobar estas divisiones con las multiplicaciones del segundo ejemplo para sorprendernos:
1/7 = 0.142857 142857 142857 14…(1 * 142857 = 142857)
2/7 = 0.285714 285714 285714 28… (2 * 142857 = 285714)
3/7 = 0.428571 428571 428571 42… (3 * 142857 = 428571)
4/7 = 0.571428 571428 571428 57… (4 * 142857 = 571428)
5/7 = 0.714285 714285 714285 71… (5 * 142857 = 714285)
6/7 = 0.857142 857142 857142 85… (6 * 142857 = 857142)

Algo más sobre el número:
142+857=999
143*999=142857
1428572 = 20.408.122.449, y 20.408 + 122.449 = 142.857

- Fíjate en el teclado númerico, qué fácil que es escribirlo…


153

1.- Es el número más pequeño que puede ser expresado como la suma de los cubos de sus dígitos:
153 = 13 + 53 + 33

2.- Es igual a la suma de los factoriales de los números del 1 al 5:
153 = 1! + 2! + 3! + 4! + 5!

3.- La suma de sus dígitos es un cuadrado perfecto:
1 + 5 + 3 = 9 = 32


4.- La suma de sus divisores (excluyendo al propio número) también es un cuadrado perfecto:
1 + 3 + 9 + 17 + 51 = 81 = 92

Además, como se puede ver, es el cuadrado de la suma de sus dígitos.

5.- Dando la vuelta a las cifras de 153 obtenemos el 351. Si los sumamos obtenemos 504, que cumple que su cuadrado es el número más pequeño que puede ser expresado como el producto de dos números diferentes cuyas cifras están invertidas:
153 + 351 = 504
5042 = 288 · 882

6.- Puede ser expresado como la suma de todos los números enteros del 1 al 17:
153 = 1 + 2 + 3 + 4 +…+ 15 + 16 + 17

Esto significa que 153 es el decimoséptimo número triangular. Como su inverso, 351, también es un número triangular (suma del 1 hasta el 26) podemos decir que 153 es un número triangular invertible.

7.- Es un número de Harshad (o número de Niven), es decir, es divisible por la suma de sus dígitos:
153/(1 + 5 + 3) = 17
Como 351 también es un número de Harshad podemos decir que 153 es un número de Harshad invertible .

Los números de Harshad fueron definidos por el matemático indio D. R. Kaprekar.

8.- Puede ser expresado como el producto de dos números formados por sus dígitos:
153 = 3 · 51

9.- El número 135, formado por una recolocación de los dígitos de 153, puede ser expresado de esta curiosa forma:
135 = 11 + 32 + 53

10.- La suma de todos los divisores de 153 es 234:
1 + 3 + 9 + 17 + 51 + 153 = 234

El producto de todos los divisores de 153 excepto el propio número es 23409:

1 · 3 · 9 · 17 · 51 = 23409

Y vemos que 23409 está formado por 234, que es la suma de todos los divisores de 153, y por 09, que es la raíz cuadrada de la suma de todos los divisores de 153 excepto el propio número (ver 4.-).

11.- Tomemos un número múltiplo de 3, elevemos al cubo cada una de sus cifras y sumemos esos cubos. Repitamos el proceso con el resultado obtenido. Al final llegaremos al 153. Veamos un ejemplo con el número 1011:

13 + 03 + 13 + 13 = 3
33 = 27
23 + 73 = 351
33 + 53 + 13 = 153

Podemos decir que a partir del 1011 alcanzamos el 153 con 4 ciclos y podemos representarlo así:

1011–>3–>27–>351–>153

Todos los números menores de 10000 llegan con este procedimiento al 153 en, como máximo, 13 ciclos. El número más pequeño que necesita 13 ciclos es el 177:

177–>687–>1071–>345–>216–>225–>141–>
–>66–>432–>99–>1458–>702–>351–>153

12.- La sumas de las potencias 0, 1 y 2 de sus dígitos es igual al producto de ellos:
10 + 51 + 32 = 1 · 5 · 3

13.- Si π(x) (Pi(x)) representa el número de primos que hay menores que x, se cumple lo siguiente:
π(153) = π(15) · 3! (Pi(153) = Pi(15) · 3!)

14.- En 6.- hemos visto que 153 es el número triangular número 17. Trabajemos con su inverso:
1/153 = 0,006535947712418300653594…

Vemos que es periódico de período 0065359477124183. Quitemos los dos ceros y consideremos el resto. Unamos esta información con la posición que ocupa el 153 entre los números triangulares, la 17. Multipliquemos ahora esa parte del período por los sucesivos múltiplos de 17. Obtenemos lo siguiente:
65359477124183 · 17 = 1111111111111111
65359477124183 · 34 = 2222222222222222
65359477124183 · 51 = 3333333333333333
65359477124183 · 68 = 4444444444444444
65359477124183 · 85 = 5555555555555555
65359477124183 · 102 = 6666666666666666
65359477124183 · 119 = 7777777777777777
65359477124183 · 136 = 8888888888888888
65359477124183 · 153 = 9999999999999999



El numero perfecto segun un EXPERTO
Curiosidades Matemáticas

73


¿Sabeis cual es el mejor número de todos?
- ¿el 5318008?
-No, el mejor número es el 73,probablemente se preguntaran por qué
-No, estamos bien
- 73 es el numero primo 21, su espejo el 37 es el número primo doceavo, y su espejo el 21 es el producto de multiplicar, sujeten sus sombreros, 7 y 3, eh eh ¿mentí?
- Entendemos el 73 es el Chuck Norris de los números
- Ya quisiera Chuck Norris, en binario 73 es un palíndromo, 1001001, al revés es 1001001, todo lo que obtienes de escribir Chuck Norris al revés es Sirron Kcuchc.


*el 5318008 escrito en calculadora, al revez se lee "boobies"

curioso



Curiosidades Sobre Las Matemáticas


1. Cuenta la leyenda que Sessa, inventor del ajedrez, presentó el juego a Sherán, príncipe de la India, quien quedó maravillado de lo ingenioso que era y de la variedad de posiciones que en él eran posibles. Con el fin de recompensarle, le preguntó qué deseaba. Sessa le pidió un corto plazo para meditar la respuesta. Al día siguiente se presentó ante el soberano y le hizo la siguiente petición: «Soberano, manda que me entreguen un grano de trigo por la primera casilla del tablero de ajedrez, dos granos por la segunda, cuatro por la tercera, ocho por la cuarta, y así sucesivamente hasta la casilla sesenta y cuatro». Sessa pedía, por tanto, que le recompensaran con el siguiente número de granos: 1 + 2 + 2 2 + 2 3 + 2 4 + … + 2 63 ; ¡más de 18 trillones!, que es la cosecha que se recogería al sembrar 65 veces toda la tierra. Por supuesto que el príncipe no pudo cumplir su promesa…

matematica

2. La geometría (medición de tierra) se inició, como ciencia, en el antiguo Egipto y en Babilonia por la necesidad de realizar mediciones terrestres.

73

3. El teorema de Pitágoras ha merecido la atención de muchos matemáticos, especialmente de la antigüedad. Actualmente están registradas unas 370 demostraciones de este teorema.

153

4. Se ha insinuado con bastante frecuencia que el teorema de Pitágoras no es deducción del gran matemático y fundador de la escuela del mismo nombre. La opinión más generalizada es que un miembro de su escuela formuló por primera vez el teorema en una época muy posterior. Pero por el mismo tiempo que vivió Pitágoras, es decir en el siglo VI a. de C., un matemático chino de nombre desconocido debió de haber llegado a la misma conclusión. En el Chon Pei Suan 0 Ching , libro matemático-filosófico, se encuentra una descripción que presenta dibujado, sin ningún género de dudas, un triángulo pitagórico con sus correspondientes relaciones.

curiosidades

5. Platón , en su escuela (la Academia), donde se discutían los más difíciles problemas de la lógica, de la política, del arte, de la vida y de la muerte, había hecho escribir encima de la puerta: «No entre el que no sea geómetra».

142857

6. Arquímedes , pariente y amigo del rey Herón de Siracusa, le escribió una vez que con cualquier fuerza dada es posible mover cualquier peso dado (si hubiera otro mundo al que pudiera ir, podría mover el nuestro). Herón se asombró y suplicó que hiciera lo posible para llevar a cabo su proposición, y que le enseñara algún gran peso movido por una fuerza pequeña. Arquímedes pidió que un barco de tres mástiles de la flota real fuera remolcado a la playa con grandes esfuerzos de muchos hombre y, después de subir a bordo muchos pasajeros y la carga acostumbrada, se sentó a cierta distancia de la nave y, sin mucho esfuerzo, pero lentamente, puso en movimiento un sistema compuesto de poleas con sus manos, tiró de la nave uniformemente hacia él como si estuviera deslizándose por el agua. Plutarco. Life o Marcellus

Sheldon

Sheldon Cooper

7. En la primera mitad del siglo III, Diofanto de Alejandría usa los símbolos algebraicos y enuncia las reglas para resolver ecuaciones de primer y segundo grado.

Curiosidades Matemáticas

8. Mohammeid ibn-Musa Al-Jwarizmi (780-846), matemático árabe, trabajó en la biblioteca del califa Al-Mahmun en Bagdag. De su nombre deriva la palabra algoritmo. Es el autor del trabajo Al-jabr wa´l muqäbala , del cual procede la palabra álgebra. Introdujo en occidente el sistema hindú de numeración decimal, que explicó con todo detalle en su obra Aritmética .

curioso

9. El matemático italiano Leonardo de Pisa (1170 – 1240) se le conocía más por Fibonachi o “hijo de Bonaccio”, un conocido mercader de Pisa que tenía negocios en el norte de África. En 1202 publicó un libro titulado Liber abaci , en el que incluye métodos y problemas algebraicos. La sucesión de Fibonacci aparece constantemente en la naturaleza. Citemos dos ejemplos concretos:

matematica

10. Si cuentas las escamas de una piña, observarás sorprendido que aparecen en espiral alrededor del vértice en número igual a los términos de la sucesión de Fibonacci

73

11. Lo mismo ocurre con las piñas de girasol; forman una red de espirales, unas van en sentido de las agujas del reloj y otras en el contrario, pero siempre las cantidades de unas y de otras son los términos consecutivos de la sucesión de Fibonacci.

153

12. Aritmética , de Johann Widman , publicado en Pforaheim en 1500, es el primer compendio práctico para comerciantes utilizado en Alemania.

13. François Viète (1540 – 1603) fue el primero en emplear letras para simbolizar las incógnitas y constantes en las ecuaciones algebraicas

curiosidades

14. El símbolo de raíz se empezó a usar en 1525 y apareció por primera vez en un libro alemán de álgebra. Antes, para indicar la raíz de un número se escribía “raíz de …”. Luego, para abreviar, se empezó a poner “r”. Pero si el número era largo, el trazo horizontal de la “r” se alargaba hasta abarcar todas las cifras. Así nació el símbolo de la raíz, como una “r” mal hecha

142857

15. Las dos rayas = que indican igualdad las empezó a utilizar un matemático inglés llamado Robert Recorde que vivió hace más de cuatrocientos años. En uno de sus libros cuenta que eligió ese signo porque “dos cosas no pueden ser más iguales que dos rectas paralelas”

Sheldon

16. A finales del siglo XVI, un gran matemático francés, François Viète , descifraba con toda facilidad los mensajes secretos de los ejércitos españoles de Felipe II (que serían bastante ingenuos, dado lo que había). Los españoles no lo dudaron ni un instante y acusaron a Viète, ante el Papa, de estar aliado con el diablo.

Sheldon Cooper

17. La definición de logaritmo fue dada por John Neper (1550 – 1617) geométricamente como razón entre dos magnitudes.

Curiosidades Matemáticas

18. La primera vez que aparece en la historia la idea de lo que iba a ser más tarde la derivada de una función en un punto es con Fermat , hacia 1625. Sin embargo, Fermat no disponía aún de la idea de límite, y así lo único que podía hacer en el cociente incremental ?y / ?x era directamente ?x = 0, lo cual es incorrecto, claro. Aún así, Fermat aplicó la idea al cálculo de máximos y mínimos y de tangentes a curvas.

curioso

19. La teoría de probabilidad tiene su origen en los juegos de azar. Hacia 1650, en Francia, un jugador llamado De Mére consultó al matemático Blaise Pascal algunas cuestiones relacionadas con el juego de dados. Pascal mantuvo correspondencia con Fermat, Huygens y Bernoulli. Gracias a todos ellos, la teoría de la probabilidad pasó de ser una mera colección de problemas aislados, relativos a algunos juegos, a ser un sector importante de las matemáticas.

matematica

20. Los signos de multiplicación x y división : fueron introducidos por William Oughtred (1574 – 1660) en el año 1657

73

21. En 1659, en el Álgebra alemana , de Jhoan Rahn , aparece el signo ÷ para indicar la división

153

22. En su Invention Nouvelle en Algebre , el francés Albert Girard (1595 – 1632) introduce por primera vez el uso de los paréntesis, explica el método de descomposición de un polinomio en factores, enuncia el teorema fundamental del álgebra, y usa el ___ colocado entre el numerador y el denominador para indicar una fracción algebraica o numérica

curiosidades

23. En 1662 el honorable Robert Boyle (1627 – 1691) , séptimo hijo del conde de Cork, llevó a cabo un estudio de los gases que culminó en el reconocimiento de una interdependencia sencilla entre la presión y el volumen. Ley de Boyle: P V = cte (a T y m ctes.)

142857

24. Robert Boyle sostuvo la idea de que todo trabajo experimental debía ser publicado con claridad y rapidez, para que otras personas pudieran repetirlo, confirmarlo y aprender con ello.

Sheldon

25. A René Descartes se le considera como el creador de la Geometría Analítica. Una de sus mayores aportaciones fue el traducir el leguaje geométrico, casi experimental, al lenguaje algebraico.

Sheldon Cooper

26. John Théophile Desaguliers (1683 – 1744), físico inglés de origen francés, fue el primer autor que empleó la palabra conductor, para designar los cuerpos que permiten el paso de la corriente eléctrica, y aislante para referirse a los que oponen gran resistencia al paso de dicha corriente.

Curiosidades Matemáticas

27. La palabra «derivada» será introducida por Lagrange a final del siglo XVIII, pero de nuevo está ausente la noción de límite.

curioso

28. La notación y’ y f´(x) , para la derivada, fueron introducidas por Lagrange , mientras que las formas dy/dx o df/dx se deben a Leibniz .

matematica

29. Leibniz fue el primero que utilizó el término función. Para él y para los matemáticos del siglo XVIII, el concepto de relación funcional en sentido matemático estaba más o menos identificado con el de una fórmula algebraica sencilla que expresara la naturaleza exacta de esta dependencia. Leibniz también introdujo los términos constante, variable y parámetros y la notación de derivada anteriormente citada.

f (x)

30. Leonard Euler estudió la sucesión (1 + 1/n) n . Al límite de esta sucesión se le llamó número e , inicial de su apellido.

73

31. El primer matemático que utilizó los determinantes en sentido moderno fue el suizo Gabriel Cramer (1704-1752), el año 1750.

153

32. El análisis de Fourier fue inventado por Jean Baptiste Joseph, barón de Fourier, físico francés, en 1807. Demostró que una onda periódica cuya longitud sea ? se puede sintetizar con una suma de ondas armónicas cuyas longitudes son ?, ?/2, ?/4, etc.

33. El Barón Joseph Fourier (1768-1830) propuso la notación moderna para las integrales (v.)

curiosidades

34. “¡Eureka! num = ??+ ??+ ?”.
Esta enigmática inscripción es lo que escribió en su cuaderno de notas Carl Friedrich Gauss cuando descubrió que todo número entero positivo es la suma de tres números triangulares, que son los que cumplen la forma n (n+1) / 2.

142857

35. Leonard Euler (1707-1783), matemático suizo, simbolizó en 1777 la raíz cuadrada de -1 con la letra i (inicial de imaginario).

√-1 = i

36. La palabra cero deriva probablemente de “zephirum”, forma latinizada del árabe “sifr” que es, a su vez, una traducción de la palabra hindú “sunya” que significa vacío o nada.

Sheldon

37. La multiplicación era considerada muy difícil y, hasta el siglo XVI, solo se enseñaba en las universidades.

Sheldon Cooper

38. Hasta fines del siglo XVIII, los números negativos no fueron aceptados universalmente.

Curiosidades Matemáticas

39. Los matemáticos de la India, en el siglo VII, usaban los números negativos para indicar deudas.

curioso

40. Gerolamo Cardano, en el siglo XVI, llamaba a los números negativos “falsos”, pero en su ” Ars Magna ” (1545) los estudió exhaustivamente.

matematica

41. John Wallis (1616 – 1703), en su “Arithmetica Infinitorum” (1655), “demuestra” la imposibilidad de su existencia diciendo que “esos entes tendrían que ser a la vez mayores que el infinito y menores que cero”.

73

42. Leonard Euler, es el primero en darles estatuto legal; en su Anleitung Zur Algebra (1770) trata de demostrar que (-1)(-1) = +1

153

43. El primero en usar la coma para separar la parte decimal de la fraccionaria fue el astrónomo italiano Giovanni Magini. La invención de los logaritmos generalizó el uso de los números decimales y el escocés John Napier, inventor de los logaritmos neperianos, recomendó en 1617 el uso del punto; el caos siguió durante todo el siglo XVIII aunque al final solo quedaron en competencia el punto y la coma. En el continente europeo el asunto se resolvió en 1698, cuando Leibnitz, propuso usar el punto como símbolo de multiplicación (“en lugar del signo x, que se confunde con x, la incógnita”); quedó así la coma para separar la parte decimal del número. En Inglaterra, sin embargo, donde se habían cerrado las puertas al alemán Leibnitz, se siguió utilizando el símbolo x para la multiplicación y el punto para separar los decimales. En España y América también se usó, y se sigue aceptando, la coma elevada.

curiosidades

44. Los griegos desarrollaron las secciones cónicas unos 400 años antes de nuestra era; unos 2000 años después, Kepler demostró que las trayectorias de los planetas son elipses y Galileo descubrió que las trayectorias de los proyectiles son parábolas.

142857

45. El hecho de que tengamos diez dedos en las manos y diez dedos en los pies, ha determinado la adopción del sistema decimal de numeración; aunque con el correr de los siglos se han propuesto y utilizado otros sistemas.

Sheldon

46. El sistema sexagesimal (base 60) fue creado por los babilonios hacia el año 200 antes de Cristo y se usa todavía para medir el tiempo y los ángulos.

Sheldon Cooper

47. La civilización maya floreció en Mesoamérica alrededor del siglo IV de nuestra era. Se sabe que tenían dos sistemas de numeración, los dos en base 20. Los aztecas también usaban un sistema vigesimal.

Curiosidades Matemáticas

48. En el siglo XVIII, el naturalista francés Georges L. Buffon propuso un sistema de base 12.

curioso

49. Joseph L. Lagrange, matemático francés del siglo XVIII, propuso un sistema con once símbolos (base 11).

matematica

50. Gottfried W. Leibnitz, inventó el sistema binario (base 2) usado hoy en los ordenadores. Leibnitz vio en este sistema la imagen de la Creación; se imaginó que la unidad (1) representaba a Dios y el cero (0) la nada, e inventó un sistema filosófico basado en esas premisas.

73



NUMERO AUREO

El número áureo o de oro (también llamado número plateado, razón extrema y media, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en minúscula) o Φ (fi) (en mayúscula), en honor al escultor griego Fidias, es un número irracional:

153

También se lo representa con la letra griega Tau (Τ τ), por ser la primera letra de la raíz griega τομή, que significa acortar, aunque encontrarlo representado con la letra Fi (Φ,φ) es más común.
Se trata de un número algebraico irracional (decimal infinito no periódico) que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción entre segmentos de rectas. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como cohetes, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.
Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.



link: http://www.youtube.com/watch?v=fzxmwCddN4c




Gracias por pasar por el post
No olviden dejar puntos!!

curiosidades