El post que buscas se encuentra eliminado, pero este también te puede interesar

componentes de una pc


Las principales partes de una PC son:
1: Monitor
2: Placa base
3: Procesador
4: Puertos ATA
5: Memoria principal (RAM)
6: Tarjetas de expansión
7: Fuente de poder
8: Disco duro, Unidad de estado sólido
9: Teclado
10: Ratón









Monitor

El monitor es uno de los principales dispositivos de salida de una computadora por lo cual podemos decir que nos permite visualizar tanto la información introducida por el usuario como la devuelta por un proceso computacional.
La tecnología de estos periféricos ha evolucionado mucho desde la aparición de las PC, desde los viejos monitores de fósforo verde hasta los nuevos de plasma. Pero de manera mucho más lenta que otros componentes, como microprocesadores, etc.
Sus configuraciones han ido evolucionando según las necesidades de los usuarios a partir de la utilización de aplicaciones más sofisticadas como el diseño asistido por computadoras o el aumento del tiempo de estancia delante de la pantalla y q se ha arreglado aumentando el tamaño de la pantalla y la calidad de la visión.
Monitores CRT
El monitor esta basado en un elemento CRT (Tubo de rayos catódicos), los actuales monitores, controlados por un microprocesador para almacenar muy diferentes formatos, así como corregir las eventuales distorsiones, y con capacidad de presentar hasta 1600x1200 puntos en pantalla. Los monitores CRT emplean tubos cortos, pero con la particularidad de disponer de una pantalla completamente plana.
Monitores color:
Las pantallas de estos monitores están formadas internamente por tres capas de material de fósforo, una por cada color básico (rojo, verde y azul). También consta de tres cañones de electrones, e igual que las capas de fósforo hay una por cada color.
Para formar un color en pantalla que no sea ninguno de los colores básicos, se combina las intensidades de loas haces de electrones de los tres colores básicos.

Monitores monocromáticos:
Muestra por pantalla u solo color: negro sobre blanco o ámbar, o verde sobre negro. Uno de estos monitores con una resolución equivalente a la de un monitor a color, si es de buena calidad, generalmente es más nítido y legible.

Funcionamiento de un monitor CRT
En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luz electrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo. El yugo del monitor, una bobina magnética, desvía la emisión de electrones repartiéndolo por la pantalla, para pintar las diversas líneas que forman un cuadro o imagen completa.
Los monitores monocromos utilizan un único tipo de fósforo pero los monitores de color emplean un fósforo de tres colores distribuidos por triadas. Cada haz controla uno de los colores básicos: rojo, azul y verde sobre los puntos correspondientes de la pantalla.
A medida que mejora la tecnología de los monitores, la separación entre los puntos disminuye y aumenta la resolución en pantalla (la separación entre los puntos oscila entre 0.25mm y 0.31mm). Loa avances en los materiales y las mejoras de diseño en el haz de electrones, producirían monitores de mayor nitidez y contraste. El fósforo utilizado en un monitor se caracteriza por su persistencia, esto es, el periodo que transcurre desde que es excitado (brillante) hasta que se vuelve inactivo(oscuro).

Características de monitores CRT
El refresco de pantalla
El refresco es el número de veces que se dibuja a pantalla por segundo. Evidentemente, cuando mayor sea la cantidad de veces que se refresque, menos se nos cansara la vista y trabajaremos mas cómodos y con menos problemas visuales.
La velocidad del refresco se mide en hertzios (Hz. 1/segundo), así que 70 Hz significa que la pantalla se dibuja 70 veces por segundo.
Para trabajar cómodamente necesitaremos esos 70 Hz. Para trabajar con el mínimo de fatiga visual, 80Hz o mas. El mínimo son 60 Hz; por debajo de esa cifra los ojos sufren demasiado, y unos minutos basta para empezar a sentir escozor o incluso un pequeño dolor de cabeza.
La frecuencia máxima de refresco de un monitor se ve limitada por la resolución de la pantalla. Esta ultima decide el numero de líneas o filas de la mascara de la pantalla y el resultado que se obtiene del numero de las filas de un monitor y de su frecuencia de exploración vertical (barrido o refresco) es la frecuencia de exploración horizontal; esto es el numero de veces por segundo que el haz de electrones debe desplazarse de izquierda a derecha de la pantalla.
Quien proporciona estos refrescos es la tarjeta grafica, pero quien debe presentarlos es el monitor. Si ponemos un refresco de pantalla que el monitor no soporta podríamos dañarlo, por lo que debemos conocer sus capacidades a fondo.
Resolución
Se denomina resolución de pantalla a la cantidad de píxeles que se pueden ubicar en un determinado modo de pantalla. Estos píxeles están a su vez distribuidos entre el total de horizontales y el de vértices. Todos los monitores pueden trabajar con múltiples modos, pero dependiendo del tamaño del monitor, unos nos serán más útiles que otros.
Un monitor cuya resolución máxima sea de 1024x768 píxeles puede representar hasta 768 líneas horizontales de 1024 píxeles cada una, probablemente además de otras resoluciones inferiores como 640x480 u 800x600. Cuanto mayor sea la resolución de un monitor, mejor será la calidad de la imagen de pantalla, y mayor será la calidad del monitor. La resolución debe ser apropiada además al tamaño del monitor; hay que decir también que aunque se disponga de un monitor que trabaje a una resolución de 1024x768 píxeles, si la tarjeta grafica instalada es VGA (640x480) la resolución de nuestro sistema será esta última.



Tipos de monitores por resolución:
TTL: Solo se ve texto, generalmente son verdes o ámbar.
CGA: Son de 4 colores máximo o ámbar o verde, son los primeros gráficos con una resolución de 200x400 hasta 400x600.
EGA: Monitores a colores 16 máximo o tonos de gris, con resoluciones de 400x600, 600x800.

VGA: Monitores a colores de 32 bits de color verdadero o en tono de gris, soporta 600x800, 800x1200
SVGA: Conocido como súper VGA q incrementa la resolución y la cantidad de colores de 32 a 64 bits de color verdadero, 600x400 a 1600x1800.

UVGA: No varia mucho del súper VGA, solo incrementa la resolución a 1800x1200.
XGA: Son monitores de alta resolución, especiales para diseño, su capacidad grafica es muy buena. Además la cantidad de colores es mayor.











Placas madre

Componentes de una placa madre

Una placa madre típica en PCs consiste de un gran circuito impreso que incluye como mínimo:
• Sockets, en donde uno o más CPUs son instalados.
• Slots, en donde la memoria principal es instalada (generalmente módulos DIMMs con memoria DRAM).
• UN chipset: Northbridge y Southbridge.
• Chips de memoria no volátil (generalmente Flash ROM), que contiene la BIOS o el firmware del sistema.
• Un reloj que produce señales de reloj para sincronizar varios componentes.
• Bahías o zócalos para tarjetas de expansión.
• Conectores de energía para distribuirla entre los distintos dispositivos de la computadora. La electricidad se recibe desde la fuente eléctrica.
• Puertos de conexión para dispositivos como los PS/2 para el ratón y el teclado, o puertos USB.
• También algunas placas madres incluyen dispositivos de enfriamiento como ventiladores.
• Muchas placas madres incluyen dispositivos que antes sólo existían como placas o tarjetas separadas y debían conectarse a la placa madre empleando zócalos libres en la misma. Por ejemplo, muchas placas madres vienen integradas con placa de sonido, de aceleración de video, módem, etc.




Factores de forma de las placas madres

Existen múltiples factores de forma para las placas madres. En general, la mayoría de los fabricantes se adaptan a los factores de forma que toman las placas madres de las computadoras compatibles con IBM (incluso las Macintosh y las Sun).

Algunos factores de forma son:

* PC/XT - fue creada por IBM para las primeras computadoras hogareñas. La especificación era abierta, por lo tanto múltiples desarrolladores se basaron en esta convirtiéndose así en un estándar de facto. Tamaño: 8,5 × 11" | 216 × 279 mm.

* AT (Advanced Technology) - fue creada por IBM para las sucesoras de las PC/XT. Las AT fueron muy populares en el tiempo de los microprocesadores 80386. Tamaño: 12 × 11"–13" | 305 × 279–330 mm.

* Baby AT - fue desarrollada por IBM en 1985 como sucesora de las AT. Fueron muy populares por su reducido tamaño. Tamaño: 8,5" × 10"–13" | 216 mm × 254-330 mm.

* ATX - fue desarrollado por Intel en 1995. Hasta hoy (2007) es el factor de forma más popular para las placas madre. Tamaño: 12" × 9,6" | 305 mm × 244 mm (Intel 1996).

* EATX - Tamaño: 12" × 13" | 305mm × 330 mm

* microATX - versión pequeña de la ATX (un 25% más pequeñas). Soporta menos tarjetas de expansión y es muy popular en computadoras pequeñas. Tamaño en 1996: 9,6" × 9,6" | 244 mm × 244 mm.

* FlexATX - subconjunto de las microATX desarrollada por Intel en 1999. Tamaño: 9,6" × 9,6" | 244 × 244 mm max.

* LPX - Tamaño: 9" × 11"–13" | 229 mm × 279–330 mm.

* NLX - Tamaño: 8"–9" × 10"-13,6" | 203–229 mm × 254–345 mm

* BTX (Balanced Technology Extended) - estándar propuesto por Intel a principios de 2000 para ser sucesor de las ATX.

* Mini-ITX - factor de forma muy pequeño y altamente integrado desarrollado por VIA en 2001 para pequeños dispositivos. Tamaño: 6,7" × 6,7" | 170 mm × 170 mm Max.

* WTX - factor de forma creado por Intel en 1998 para servidores y estaciones de trabajo con múltiples CPUs y discos duros. Tamaño: 14" × 16,75" | 355,6 mm × 425,4 mm

Fabricantes de placas madres

Los tres principales fabricantes de placas madres son ASUS, Foxconn e Intel. Luego existen otros como AOpen, ASRock, BFG Technologies, Biostar, Chaintech, DFI, ECS, EPoX, eVGA, FIC, Gigabyte, Jetway, Mach Speed, Magic-Pro, MSI, Mercury, Shuttle, Soyo, Supermicro, Tyan, Universal abit (ABIT), VIA y XFX.

Microprocesadores

Microchip más importante en una computadora, es considerado el cerebro de una computadora. Está constituido por millones de transistores integrados. Este dispositivo se ubica en un zócalo especial en la placa madre y dispone de un sistema de enfriamiento (generalmente un ventilador).
Lógicamente funciona como la unidad central de procesos (CPU), que está constituida por registros, la unidad de control y la unidad aritmético-lógica. En el microprocesador se procesan todas las acciones de la computadora.
Su "velocidad" es medida por la cantidad de operaciones por segundo que puede realizar: la frecuencia de reloj. La frecuencia de reloj se mide en MHz (megahertz) o gigahertz (GHz).

También dispone de una memoria caché (medida en kilobytes), y un ancho de bus (medido en bits).

El primer microprocesador comercial fue el Intel 4004, presentado el 15 de noviembre de 1971. Actualmente las velocidad de procesamiento son miles de veces más grandes que los primeros microprocesadores. También comienzan a integrarse múltiples procesadores para ampliar la capacidad de procesamiento. Se estima que para 2010 vendrán integrados hasta 80 núcleos en un microprocesador, son llamados procesadores multi-core.

Los principales fabricantes de microprocesadores son AMD e Intel.

Puertos ATA

Serial ATA o SATA (acrónimo de Serial Advanced Technology Attachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento, como puede ser el disco duro, lectores y regrabadores de CD/DVD/BR, Unidades de Estado Sólido u otros dispositivos de altas prestaciones que están siendo todavía desarrollados.
En el sistema IDE el controlador del dispositivo se encuentra integrado en la electrónica del dispositivo. Las diversas versiones de sistemas ATA son:

• Parallel ATA (se está utilizando la sigla PATA)
• ATA-1.
• ATA-2, soporta transferencias rápidas en bloque y multiword DMA.
• ATA-3, es el ATA-2 revisado y mejorado. Todos los anteriores soportan velocidades de 16 MB/s.
• ATA-4, conocido como Ultra-DMA o ATA-33, que soporta transferencias en 33 MB/s.
• ATA-5 o Ultra ATA/66, originalmente propuesta por Quantum para transferencias en 66 MB/s.
• ATA-6 o Ultra ATA/100, soporte para velocidades de 100 MB/s.
• ATA-7 o Ultra ATA/133, soporte para velocidades de 133 MB/s.
• ATA-8 o Ultra ATA/166, soporte para velocidades de 166 MB/s.
• Serial ATA, remodelación de ATA con nuevos conectores (alimentación y datos), cables, tensión de alimentación y conocida comúnmente como SATA, soporta velocidades de 150 y 300 MB/s.
• Ata over ethernet implementación sobre Ethernet de comandos ATA para montar una red SAN. Se presenta como alternativa a ISCSI
En un primer momento, las controladoras IDE iban como tarjetas de ampliación, mayoritariamente ISA, y sólo se integraban en la placa madre de equipos de marca como IBM, Dell o Commodore. Su versión más extendida eran las tarjetas multi I/O, que agrupaban las controladores IDE y de Disquete, así como los puertos RS-232 y el Puerto paralelo, y sólo modelos de gama alta incorporaban zócalos y conectores SIMM para cachear el disco. La integración de dispositivos trajo consigo que un solo chip fuera capaz de desempeñar todo el trabajo.
Con la aparición del bus PCI, las controladoras IDE casi siempre están incluidas en la Placa base, inicialmente como un chip, para pasar a formar parte del Chipset. Suele presentarse como dos conectores para dos dispositivos cada uno. De los dos discos duros, uno tiene que estar como esclavo y el otro como maestro para que la controladora sepa a/de qué dispositivo mandar/recibir los datos. La configuración se realiza mediante jumpers. Habitualmente, un disco duro puede estar configurado de una de estas tres formas:
* Como Maestro ('Master'). Si es el único dispositivo en el cable, debe tener esta configuración, aunque a veces también funciona si está como esclavo. Si hay otro dispositivo, el otro debe estar como esclavo.
* Como Esclavo ('slave'). Debe haber otro dispositivo que sea maestro.
* Selección por cable (cable select). El dispositivo será maestro o esclavo en función de su posición en el cable. Si hay otro dispositivo, también debe estar configurado como cable select. Si el dispositivo es el único en el cable, debe estar situado en la posición de maestro. Para distinguir el conector en el que se conectará el primer bus Ide (Ide 1) se utilizan colores distintos.
Este diseño (dos dispositivos a un bus) tiene el inconveniente de que mientras se accede a un dispositivo el otro dispositivo del mismo conector IDE no se puede usar. En algunos Chipset (Intel FX triton) no se podría usar siquiera el otro IDE a la vez.
Este inconveniente está resuelto en S-ATA y en SCSI, que pueden usar dos dispositivos por canal.
Los discos IDE están mucho más extendidos que los SCSI debido a su precio mucho más bajo. El rendimiento de IDE es menor que SCSI pero se están reduciendo las diferencias. El UDMA hace la función del Bus Mastering en SCSI con lo que se reduce la carga de la CPU y aumenta la velocidad y el Serial ATA permite que cada disco duro trabaje sin interferir a los demás.

De todos modos aunque SCSI es superior se empieza a considerar la alternativa S-ATA para sistemas informáticos de gama alta ya que su rendimiento no es mucho menor y su diferencia de precio sí resulta más ventajosa.

memoria ram


La memoria RAM (Random Access Memory Module o memoria de acceso aleatorio) es un tipo de memoria que utilizan los ordenadores para almacenar los datos y programas a los que necesita tener un rápido acceso.

Se trata de una memoria de tipo volátil, es decir, que se borra cuando apagamos el ordenador, aunque también hay memorias RAM no volátiles (como por ejemplo las memorias de tipo flash.

Los datos almacenados en la memoria RAM no sólo se borran cuando apagamos el ordenador, sino que tambien deben eliminarse de esta cuando dejamos de utilizarlos (por ejemplo, cuando cerramos el fichero que contiene estos datos).

Estas memorias tienen unos tiempos de acceso y un ancho de banda mucho más rápido que el disco duro, por lo que se han convertido en un factor determinante para la velocidad de un ordenador. Esto quiere decir que, dentro de unos límites, un ordenador irá más rápido cuanta mayor sea la cantidad de memoria RAM que tenga instalada, expresada en MegaBytes o GigaBytes.

Los chips de memoria suelen ir conectados a unas plaquitas denominadas módulos, pero no siempre esto ha sido así, ya que hasta los ordenadores del tipo 8086 los chips de memoria RAM estaban soldados directamente a la placa base.

Con los ordenadores del tipo 80386 aparecen las primeras memorias en módulos, conectados a la placa base mediante zócalos, normalmente denominados bancos de memoria, y con la posibilidad de ampliarla (esto, con los ordenadores anteriores, era prácticamente imposible).

Los primeros módulos utilizados fueron los denominados SIMM (Single In-line Memory Module). Estos módulos tenían los contactos en una sola de sus caras y podían ser de 30 contactos (los primeros), que posteriormente pasaron a ser de 72 contactos.



Este tipo de módulo de memoria fue sustituido por los módulos del tipo DIMM (Dual In-line Memory Module), que es el tipo de memoria que se sigue utilizando en la actualidad.

Esta clasificación se refiere exclusivamente a la posición de los contactos.

En cuanto a los tipos de memoria, la clasificación que podemos hacer es la siguiente:

DRAM:

Las memorias DRAM (Dynamic RAM) fueron las utilizadas en los primeros módulos (tanto en los SIMM como en los primeros DIMM). Es un tipo de memoria más barata que la SDRAM, pero también bastante más lenta, por lo que con el paso del tiempo ha dejado de utilizarse. Esta memoria es del tipo asíncronas, es decir, que iban a diferente velocidad que el sistema, y sus tiempos de refresco eran bastante altos (del orden de entre 80ns y 70ns), llegando en sus últimas versiones, las memorias EDO-RAM a unos tiempos de refresco de entre 40ns y 30ns.


SDRAM:

Las memorias SDRAM (Synchronous Dynamic RAM) son las utilizadas actualmente (aunque por SDRAM se suele identificar a un tipo concreto de módulos, en realidad todos los módulos actuales son SDRAM).

Son un tipo de memorias síncronas, es decir, que van a la misma velocidad del sistema, con unos tiempos de acceso que en los tipos más recientes son inferiores a los 10ns, llegando a los 5ns en los más rápidos.
Las memorias SDRAM se dividen a su vez en varios tipos


SDR:


Los módulos SDR (Single Data Rate) son los conocidos normalmente como SDRAM, aunque, como ya hemos dicho, todas las memorias actuales son SDRAM.
Se trata de módulos del tipo DIMM, de 168 contactos, y con una velocidad de bus de memoria que va desde los 66MHz a los 133MHz. Estos módulos realizan un acceso por ciclo de reloj.
Empiezan a utilizarse con los Pentium II y su utilización llega hasta la salida de los Pentium 4 de Intel y los procesadores Athlon XP de AMD, aunque las primeras versiones de este último podían utilizar memorias SDR.
Este tipo de módulos se denominan por su frecuencia, es decir, PC66, PC100 o PC133.

DDR:


Los módulos DDR SDRAM (Double Data Rate SDRAM) son una evolución de los módulos SDR. Se trata de módulos del tipo DIMM, de 184 contactos y 64bits, con una velocidad de bus de memoria de entre 100MHz y 200MHz, pero al realizar dos accesos por ciclo de reloj las velocidades efectivas de trabajo se sitúan entre los 200MHz y los 400MHz. Este es un punto que a veces lleva a una cierta confusión, ya que tanto las placas base como los programas de información de sistemas las reconocen unas veces por su velocidad nominal y otras por su velocidad efectiva.

Comienzan a utilizarse con la salida de los Pentium 4 y Thlon XP, tras el fracasado intento por parte de Intel de imponer para los P4 un tipo de memoria denominado RIMM, que pasó con más pena que gloria y tan sólo llegó a utilizarse en las primeras versiones de este tipo de procesadores (Pentium 4 Willamette con socket 423).

Se han hecho pruebas con módulos a mayores velocidades, pero por encima de los 200MHz (400MHz efectivos) suele bajar su efectividad. Esto, unido al coste y a la salida de los módulos del tipo DDR2, ha hecho que en la práctica sólo se comercialicen módulos DDR de hasta 400MHz (efectivos).
Estas memorias tienen un consumo de entre 0 y 2.5 voltios.
Este tipo de módulos se está abandonando, siendo sustituido por los módulos del tipo DDR2.



DDR2:


Los módulos DDR2 SDRAM son una evolución de los módulos DDR SDRAM. Se trata de módulos del tipo DIMM, en este caso de 240 contactos y 64bits. Tienen unas velocidades de bus de memoria real de entre 100MHz y 266MHz, aunque los primeros no se comercializan.
La principal característica de estos módulos es que son capaces de realizar cuatro accesos por ciclo de reloj (dos de ida y dos de vuelta), lo que hace que su velocidad de bus de memoria efectiva sea el resultado de multiplicar su velocidad de bus de memoria real por 4.
Esto duplica la velocidad en relación a una memoria del tipo DDR, pero también hace que los tiempos de latencia sean bastante más altos (pueden llegar a ser el doble que en una memoria DDR).
El consumo de estas memorias se sitúa entre los 0 y 1.8 voltios, es decir, casi la mitad que una memoria DDR.

Tanto las memorias DDR como las memorias DDR2 se suelen denominar de dos formas diferentes, o bien en base a su velocidad de bus de memoria efectiva (DDR-266, DDR-333, DDR-400, DDR2-533, DDR2-667, DDR2-800) o bien por su ancho de banda teórico, es decir, por su máxima capacidad de transferencia (PC-2100, PC-2700 y PC-3200 en el caso de los módulos DDR y PC-4200, PC-5300 y PC-6400 en el caso de los módulos DDR2).

El Ancho de banda de los módulos DDR y DDR2 se puede calcular multiplicando su velocidad de bus de memoria efectiva por 8 (DDR-400 por 8 = PC-3200).


El último y más reciente tipo de memorias es el DDR3.


Módulo DDR. Vemos que tiene una sola muesca de posicionamiento, situada en esta ocasión a la izquierda del centro del módulo.

Este tipo de memorias (que ya han empezado a comercializarse, y están llamadas a sustituir a las DDR2) son también memorias del tipo SDRAM DIMM, de 64bits y 240 contactos, aunque no son compatibles con las memorias DDR2, ya que se trata de otra tecnología y además físicamente llevan la muesca de posicionamiento en otra situación.

Según las informaciones disponibles se trata de memorias con una velocidad de bus de memoria real de entre 100MHz y 250MHz, lo que da una velocidad de bus de memoria efectiva de entre 800MHz y 2000MHz (el doble que una memoria DDR2 a la misma velocidad de bus de memoria real), con un consumo de entre 0 y 1.5 voltios (entre un 16% y un 25% menor que una DDR2) y una capacidad máxima de transferencia de datos de 15.0GB/s.

En cuanto a la medida, en todos los casos de memorias del tipo SDRAM (SDR, DDR, DDR2 y DDR3) se trata de módulos de 133mm de longitud.

En cuanto a su instalación, pueden ver una amplia información de cómo se instalan en el tutorial - Instalación y ampliación de módulos de memoria..

Una cuestión a considerar es que estos tipos de módulos no son compatibles entre sí, para empezar porque es físicamente imposible colocar un módulo en un banco de memoria que no sea de su tipo, debido a la posición de la muesca de posicionamiento.
Hay en el mercado un tipo de placas base llamadas normalmente duales (OJO, no confundir esto con la tecnología Dual Channel) que tienen bancos para dos tipos de módulos (ya sean SDR y DDR o DDR y DDR2), pero en estos casos tan sólo se puede utilizar uno de los tipos. Esto quiere decir que en una placa base dual DDR - DDR2, que normalmente tiene cuatro bancos (dos para DDR y otros dos para DDR2), podemos poner dos módulos DDR o dos módulos DDR2, pero NO un módulo DDR y otro DDR2 o ninguna de sus posibles combinaciones. Es decir, que realmente sólo podemos utilizar uno de los pares de bancos, ya sea el DDR o el DDR2.

Tarjetas de expansion

Es una serie de circuitos, chips y puertos integrados en una placa plástica, la cuál cuenta con un conector lineal diseñado para ser insertado dentro de una ranura ó "Slot" especial de la tarjeta principal ("Motherboard". Esta tarjeta tiene como función aumentar las capacidades de la computadora en la que se instala (aumentar la capacidad de proceso de video, permitir el acceso a redes, permitir la captura de audio externa, etc.).

Tipos básicos de tarjetas de expansión
Dependiendo la función de cada una, es posible clasificarlas de la siguiente manera (por supuesto no se descarta la existencia de mas tipos), sin embargo las mas utilizadas son las siguientes que se enlistan en las ligas:
• Tarjetas aceleradoras de gráficos.
• Tarjetas red local cableada.
• Tarjetas de red inalámbrica.
• Tarjetas de red ópticas (para fibra óptica).
• Tarjetas PCMCIA.
• Tarjetas de sonido.
• Tarjetas controladoras IDE.
• Tarjetas controladoras SCSI.
• Tarjetas fax-módem.
• Tarjetas osciloscopio.
• Tarjetas de video.
• Tarjetas de expansión de puertos.
• Tarjetas de diagnóstico.
• Tarjetas sintonizadoras TV/FM.
• Tarjetas capturadoras de video.
• Tarjeta adaptadora PCMCIA a PC.
• Tarjeta de expansión de memoria RAM.

Aunque es importante mencionar que cada tipo, tiene sus características especiales dependiendo del momento tecnológico, esto puede ser por el tipo de ranura (XT, MCA, ISA; PCI-E, etc.), pero es mejor conocerlas de manera individual.
Tipos de tarjetas de expansión externas

Actualmente las tarjetas de expansión tienden a miniaturizarse y a volverse portátiles, por lo que de manera formal, ya no se trata de tarjetas de expansión sino de periféricos. Sin embargo por tratarse de tecnología nueva, que aún no se ha clasificado de manera generalizada, pero se les conoce como "tarjetas de expansión externas". Es importante mencionar que ya cuentan con nombres propios, como ejemplos nos encontramos las siguientes:
• Adaptador USB-LAN (para redes basadas en cable).
• Adaptador USB-WiFi (para redes inalámbricas).
• Tarjeta de audio externa USB-Jack 3.5" (para la conexión de bocinas, micrófono y audífonos).
• HUB USB (aumenta la cantidad de puertos USB disponibles).
• Adaptador USB-Fax/Módem (permite la conexión a Internet por medio de la red telefónica convencional).
• Adaptador USB - TV/Radio (permite la conexión del cable de la antena de la TV y de la radio).

Tipos de tarjetas de expansión integradas

Se trata de tarjetas de expansión presentes en el cuerpo de la tarjeta principal (Motherboard), las cuáles regularmente cuentan con funciones básicas y baja capacidad lo que permite economizar el precio de los equipos. Estas tarjetas no se pueden desmontar de la "Motherboard" (ya que vienen en forma de puertos); el modo de desactivarlas es colocando una tarjeta externa ó interna nueva y configurándola de manera correcta. Los tipos de tarjetas de expansión integradas más comunes son:
• Tarjeta de red
• Tarjeta de video
• Tarjeta de audio


Fuentes de poder

Las fuentes de poder se encargan de entregar la energía necesaria a las distintas piezas del computador, si bien cuando compras un gabinete de económico este trae fuente de poder eso no quiere decir que el dilema a terminado. Los computadores de hoy en dia sufren de dos grandes problemas que antes no existían, como alimentarles energía y disipar su temperatura.

-¿Que es una fuente de poder?
En palabras simples es un transformador que se enchufa a 110 o 220v y entrega distintas líneas de voltaje, hoy en día las que se ocupan son 3.3v, 5v y 12v. Para elegir una fuente de poder hay que fijarse en dos datos. Los watts.
y los amperes. Debiera de haber un equilibrio en esto, pero lamentablemente muchos fabricantes nos han tratado de afilar mas de una vez. Esto se debe a que una fuente de poder puede decir que tiene 500w, pero esto no se refiere a que son 500w continuos, sino que 500w en el mejor de los casos, es decir durante 60 segundos, a 20 grados C, 0% humedad y muchos otros factores ambientales necesarios para que se cumpla, por lo tanto es mejor guiarse por el amperaje, que en teoría es lo mismo ya que la ley de Ohm dice lo siguiente: Watts =(Volts * Amperes ), de este modo podemos hacer un ejercicio interesante, entonces si una fuente tiene muchos watts en teoría debiera de tener muchos amperes.





-¿Porque necesitamos una fuente de calidad?
1.- Si la corriente que recibes a tu hogar, los 220v fluctúan demasiado, una buena fuente podrá filtrar esto y que no hayan variaciones en las corrientes internas de la fuente de poder.
2.- Da estabilidad a la hora de overclockear.
3.- Da estabilidad cuando tienes enchufado 14 luces de cátodo.


-¿Que fuente necesito?
Las fuentes mas conocidas son las típicas ATX, las mas viejas que ocupábamos en PIII y los primeros Athlon traían el conector ATX de 20 pines, molex y conector para diskettera, estas son las ATX 1.0, luego debido a las exigencias que necesitaban los P4 y sus placas madres, se creo fuentes ATX que además traen un conector auxiliar de 12v llamado ATX12v, estas fuentes son las ATX 1.1.

Con el tiempo muchas placas sobre todo las de gama alta, para AthlonXP lo utilizaron, pero hoy en día hay un nuevo formato llamado ATX2.0, la diferencia entre ATX 1.1 y ATX 2.0 es simple, traen un conector de 24 pines, 4 pines mas que las fuentes ATX 1.1, esto se debe a que el nuevo bus de tarjetas de video PCI-e necesita 75A para funcionar. La gran mayoría de las placas madres actuales que traen PCI-e aun son compatibles con ATX 1.1 pero no garantizan estabilidad con estas fuentes de poder.

También existen adaptadores de 20 a 24 pines, pero la verdad me di cuenta que de poco sirven, ya que solo es un Y para los 12v, osea es engañarse nada mas, eso si ayudan a mantener la simetría en el conector ATX y que quede firme. Ojo, las fuentes ATX 2.0 son compatibles hacia atras, puedes ocupar un K6 con una fuente ATX2.0 utilizando un adaptador de 24 pines a 20 pines, esto viene incluido en las fuentes de poder. Dentro del formato ATX2.0 hay fuentes con una linea de +12v, con dos lineas de +12v e incluso con 4 lineas de +12v. Las fuentes con dos lineas de 12v es para dar mas estabilidad al sistema. Tienen lineas independientes para los 12v que van en los pines del conector ATX de 24 pines y los de la línea auxiliar. Las fuentes que traen 4 lineas de 12v utilizan las dos otras lineas para alimentar tarjetas de video, son especiales para plataformas con tarjetas de video en SLI donde se ocupan dos tarjetas de video simultáneamente.

-Más Características
1.- Fuentes Modulares:
También dentro de todo esto existe un nuevo tipo de fuente de poder que solo difiere en estética. Son las llamadas fuentes modulares, en las cuales puedes elegir que enchufes conectar y cuales no. Es el caso de la Antec NeoPower, la OCZ ModStream y la Ultra X-Connect.

2.- Fuentes con Voltajes Regulables
Algunas fuentes, generalmente las más caras y famosas, traen rieles con voltajes regulables. Es decir que puede subir el voltaje de la línea de 12v a 12.6v por ejemplo, en el caso de las fuentes que traen regulación del 5%. Esto sirve para los overclockeros indios, cuando están bajo mucha carga y van a correr un benchmark, puede que las fuentes les guateen un poco y tiren menos voltaje de lo indicado, para esto basta con subir la perilla y que vuelva al voltaje esperado. Este es el caso de la OCZ Powerstream 3.- PFC: PFC son las siglas de power factor correction. Mediante el PFC las fuentes son mas eficientes, una fuente de poder sin PFC tiene una perdida entre el 30% hasta un 50%, por lo tanto tu fuente Codegen de 600w tiene una potencia real de 300w; con PFC la perdida es del 5%, por ende son mas poderosas.

Hoy en día en Europa es obligación que todos los artefactos eléctricos que consuman mas de 50w traigan PFC, esto se debe a que gastan menos luz y con esto son amables con el medio ambiente, además se calientan menos y por lo tanto duran más.


Hay dos tipos de PFC, el activo y pasivo

a.- PFC Activo: Sistema de corrección que refasea, reestructura e incluso amplifica la señal eléctrica para que a la salida de las lineas haya un flujo constante y uniforme. Esto permite una mayor estabilidad en el sistema sobre todo en lugares en que la instalación eléctrica no es de lo más católica.

b.- PFC Pasivo: El PFC pasivo es un modo mas barato de PFC. Emparejan los voltajes y le quitan ruido. Cuando una fuente no enfatiza que trae PFC Activo es porque probablemente traiga PFC pasivo.









Disco duro

Un disco duro es un dispositivo de almacenamiento que constituye una de las partes más importantes de un computador. Es la parte del computador que contiene la información codificada y que almacena los distintos programas y archivos. Este sistema de almacenamiento opera de manera digital (es decir la información está cuantizada, codificada en valores discretos de ceros o unos) en discos de superficies magnéticas que giran rápidamente. En un computador, entonces el disco duro es una de las partes esenciales y su sistema principal de almacenamiento de archivos.

El disco duro se denominó así con el fin de diferenciarlo de los disquetes o discos flexibles, de mucha menor capacidad de almacenamiento. El disco duro puede almacenar una gran cantidad de gigabytes, mientras que el antiguo disquete sólo almacenaba 1,4 megabytes (ahora en desuso, con la llegada de los famosos pendrive o memoria USB con gran capacidad de almacenamiento, durabilidad, y un reducido tamaño). Dicen los expertos que el futuro del almacenamiento justamente está en memorias Flash o USB de gran capacidad y velocidad, y entonces serán verdaderamente "duros" en el sentido que serán ya completamente sólidos, sin partes móviles que se puedan estropear.

El disco duro consiste en una serie de discos o platos que están ubicados dentro de la carcasa del aparato. Estos platos, que normalmente son 2 o 4, aunque puede haber hasta 7, están hechos de aluminio o cristal y giran rápidamente, todos a la vez, impulsados por un motor. Los platos son leídos mediante el cabezal de lectura y escritura, que es un conjunto de brazos que se encuentran alineados verticalmente, de manera que no pueden moverse independientemente, sino todos al mismo tiempo. Cada plato es leído por dos brazos que tienen en sus puntas una cabeza de lectura y escritura cada uno, que leen cada cara del plato. Normalmente, hay 8 cabezas para 4 platos. Las cabezas nunca tocan el plato, debido a que podría causar muchos daños teniendo en cuenta la velocidad con la que giran.

Los platos están constituidos por pistas, que son las circunferencias de cada cara, como en un disco de vinilo. Las cabezas se mueven desde la pista externa, denominada pista 0, hasta la pista interna. Las pistas están alineadas en todos los platos. El conjunto de las pistas alineadas verticalmente en cada plato se llama cilindro. Las pistas están divididas por sectores que no tienen un tamaño fijo. Normalmente, los sectores son de 512 bytes (las unidades de memoria más pequeñas).

El desempeño de un disco duro se mide por distintos factores. Uno de ellos es el tiempo de acceso, que es el tiempo en que el dispositivo comienza a enviar el dato después de recibir la orden. El tiempo de acceso es la suma del tiempo de búsqueda, la latencia y el tiempo de lectura y escritura. El tiempo de búsqueda es que se tarda la cabeza en llegar a la pista de destino. La latencia es el tiempo que se espera para que el disco gire hasta que el sector deseado pase por donde la cabeza espera. Finalmente, el tiempo de lectura y escritura es el que demora la controladora en localizar el dato, leerlo y mandar la nueva información al computador. Otro factor importante en un disco duro es la tasa de transferencia que es la velocidad en que se transfiere la información al computador luego de que la cabeza esté en la pista y sector deseado.

Tipos de discos duros
Los discos duros pueden ser clasificados por diferentes tipologías o clases, vamos a ver de forma breve un resumen general de los diferentes tipos de clasificación:


Clasificación por su ubicación interna o externa
Esta clasificación sólo nos proporcionará información sobre la ubicación del disco, es decir, si el mismo se encuentra dentro de la carcasa del ordenador o bien fuera de la misma, conectándose al PC mediante un cable USB o Firewire.
Dentro de los discos duros externos tenemos los discos FireWire, USB y los nuevos SATA.

Clasificación por tamaño del disco duro
Esta clasificación atiende únicamente a al tamaño del disco duro, desde los primeros discos duros comerciales que comenzaron a llegar al mercado y cuyo tamaño era de 5,25 pulgadas a los más modernos de 1,8 pulgadas contenidos en dispositivos MP3 y ordenadores portátiles de última generación.

Los discos duros con los que suelen ir equipados los ordenadores de escritorio o de sobremesa son discos duros de 3,5" pulgadas, son los más utilizados y por tanto los más económicos, existiendo en la actualidad modelos que ya se acercan a 1 >Terabyte< de capacidad

Clasificación por el tipo de controladora de datos
La interficie es el tipo de comunicación que realiza la controladora del disco con la placa base o bus de datos del ordenador.
La controladora de datos para discos duros internos más común en la actualidad es la SATA o serial ATA, anteriormente ATA a secas, sus diferencias con la antigua ATA, también denominada IDE es que SATA es mucho más rápida en la transferencia de datos, con una velocidad de transferencia muy cercana a los discos duros profesionales SCSI.
El tipo de controladora SCSI se encuentra reservada a servidores de datos pues la tecnología que emplean es superior a costa de ser mucho más costosa y disponer de menor capacidad por disco, un disco duro SCSI de 100 Gb. valdrá más caro que un disco duro SATA de 250 Gb. no obstante la velocidad de transferencia de información y sobre todo la fiabilidad del disco duro SCSI y de la controladora SCSI es muy superior. Por este mismo motivo hace ya algunos años, aproximadamente hasta el año 2000 los ordenadores Apple Mac equipaban siempre discos duros SCSI pues eran máquinas bastante exclusivas, hoy en día los Mac han reducido su precio, entre otras cosas reduciendo o equiparando la calidad de sus componentes por la de los ordenadores PC de fabricantes como HP, Compaq, Dell, etc. y se han popularizado hasta tal punto que en territorios como USA ya está alcanzando una cuota de mercado superior al 15%.

Clasificación por tipo de ordenador
En la actualidad se venden más ordenadores portátiles que ordenadores de sobremesa, por eso también existe la clasificación por el tipo de ordenador, es algo muy común encontrar ofertas de empresas de informática donde ofrecen: "Disco duro para portátil" los discos duros para portátil difieren de los discos duros normales básicamente en su tamaño aunque también en su diseño interior pues están preparados para sufrir más golpes debido a la movilidad de los equipos que lo contiene.

En el disco duro es donde los ordenadores portátiles suelen tener su talón de aquiles, pues si juntamos su movilidad, todo lo que se mueve sufre golpes, y su reducido tamaño incapaz en muchas ocasiones de ventilar el interior del ordenador tenemos un cóctel explosivo.
La excasa ventilación de un portátil hará que el disco duro sufra numerosos >cambios térmicos< y exceso de calor en sus circuitos, factores de alto riesgo para la conservación de los datos del disco duro.
También podemos clasificar dentro de este grupo los discos duros de servidor que suelen ser discos duros normales, bien SCSI o SATA pero con la peculiaridad de que se encuentran conectados a complejas tarjetas >RAID< cuya función es la de replicar los datos de forma automática de forma que al escribir un archivo o documento en él dicha información se duplica, triplica o cuatriplica en la matriz o array de discos duros que contenga el servidor.



Teclado
El teclado es un componente al que se le da poca importancia, especialmente en los ordenadores clónicos. Si embargo es un componente esencial, pues es el que permitirá que nuestra relación con el ordenador sea fluida y agradable, de hecho, junto con el ratón son los responsables de que podamos interactuar con nuestra máquina.
Así, si habitualmente usamos el procesador de textos, hacemos programación, u alguna otra actividad en la que hagamos un uso intensivo de este componente, es importante escoger un modelo de calidad. En el caso de que seamos usuarios esporádicos de las teclas, porque nos dediquemos más a juegos o a programas gráficos, entonces cualquier modelo nos servirá, eso sí, que sea de tipo mecánico. No acepteis ningún otro.
Parámetros importantes a tener en cuenta son el tacto, no debe de ser gomoso, y el recorrido, no debe de ser muy corto. También es importante la ergonomía, es aconsejable que disponga de una amplia zona en la parte anterior, para poder descansar las muñecas. Y hablando de la ergonomía, este es uno de los parámetros que más destaca en un teclado, uno de los ya clásicos en este aspecto es el "Natural keyboard" de Microsoft.
Los mejores teclados que yo haya visto jamás son los de IBM, sobre todo los antiguos, aunque para entornos no profesionales, quizá puedan resultar incluso incómodos, por la altura de las teclas, su largo recorrido, y sus escandalosos "clicks". Estos teclados, fabricados después por Lexmark, y ahora por Unicomp, tienen una bien ganada fama de "indestructibles".
Y ya pasando a aspectos más técnicos, vamos a describir en detalle sus características.
Actualmente sólo quedan dos estándares en cuanto a la distribución de las teclas, el expandido, que IBM lo introdujo ya en sus modelos AT, y el de Windows95, que no es más que una adaptación del extendido, al que se le han añadido tres teclas de más, que habitualmente no se usan, y que sólo sirven para acortar la barra espaciadora hasta límites ridículos.
En cuanto al conector, también son dos los estándares, el DIN, y el mini-DIN. El primero es el clásico de toda la vida, y aún es el habitual en equipos clónicos.
El segundo, introducido por IBM en sus modelos PS/2, es usado por los fabricantes "de marca" desde hace tiempo, y es el habitual en las placas con formato ATX.
De todas formas, no es un aspecto preocupante, pues hay convertidores de un tipo a otro.
Nos dejamos otro tipo de conector cada vez más habitual, el USB, pero la verdad es que de momento apenas hay teclados que sigan este estándar.


















RatOn (mouse)
El ratón o mouse (del inglés, pronunciado [maʊs]) es un dispositivo apuntador utilizado para facilitar el manejo de un entorno gráfico en un computador. Generalmente está fabricado en plástico y se utiliza con una de las manos. Detecta su movimiento relativo en dos dimensiones por la superficie plana en la que se apoya, reflejándose habitualmente a través de un puntero o flecha en el monitor.

Hoy en día es un elemento imprescindible en un equipo informático para la mayoría de las personas, y pese a la aparición de otras tecnologías con una función similar, como la pantalla táctil, la práctica ha demostrado que tendrá todavía muchos años de vida útil. No obstante, en el futuro podría ser posible mover el cursor o el puntero con los ojos o basarse en el reconocimiento de voz.
Tipos o modelos
Por mecanismo
Mecánicos
Tienen una gran esfera de plástico o goma, de varias capas, en su parte inferior para mover dos ruedas que generan pulsos en respuesta al movimiento de éste sobre la superficie. Una variante es el modelo de Honeywell que utiliza dos ruedas inclinadas 90 grados entre ellas en vez de una esfera.
La circuitería interna cuenta los pulsos generados por la rueda y envía la información a la computadora, que mediante software procesa e interpreta.
Parte inferior de un ratón con cable y sensor óptico.
Ópticos
Es una variante que carece de la bola de goma que evita el frecuente problema de la acumulación de suciedad en el eje de transmisión, y por sus características ópticas es menos propenso a sufrir un inconveniente similar. Se considera uno de los más modernos y prácticos actualmente. Puede ofrecer un límite de 800 ppp, como cantidad de puntos distintos que puede reconocer en 2,54 centímetros (una pulgada); a menor cifra peor actuará el sensor de movimientos. Su funcionamiento se basa en un sensor óptico que fotografía la superficie sobre la que se encuentra y detectando las variaciones entre sucesivas fotografías, se determina si el ratón ha cambiado su posición. En superficies pulidas o sobre determinados materiales brillantes, el ratón óptico causa movimiento nervioso sobre la pantalla, por eso se hace necesario el uso de una alfombrilla de ratón o superficie que, para este tipo, no debe ser brillante y mejor si carece de grabados multicolores que puedan "confundir" la información luminosa devuelta.
Láser
Este tipo es más sensible y preciso, haciéndolo aconsejable especialmente para los diseñadores gráficos y los jugadores de videojuegos. También detecta el movimiento deslizándose sobre una superficie horizontal, pero el haz de luz de tecnología óptica se sustituye por un láser con resoluciones a partir de 2000 ppp, lo que se traduce en un aumento significativo de la precisión y sensibilidad.

TrackBall
El concepto de trackball es una idea que parte del hecho: se debe mover el puntero, no el dispositivo, por lo que se adapta para presentar una bola, de tal forma que cuando se coloque la mano encima se pueda mover mediante el dedo pulgar, sin necesidad de desplazar nada más ni toda la mano como antes. De esta manera se reduce el esfuerzo y la necesidad de espacio, además de evitarse un posible dolor de antebrazo por el movimiento de éste. A algunas personas, sin embargo, no les termina de resultar realmente cómodo. Este tipo ha sido muy útil por ejemplo en la informatización de la navegación marítima.






Por conexión

Por cable
Es el formato más popular y más económico, sin embargo existen multitud de características añadidas que pueden elevar su precio, por ejemplo si hacen uso de tecnología láser como sensor de movimiento. Actualmente se distribuyen con dos tipos de conectores posibles, tipo USB y PS/2; antiguamente también era popular usar el puerto serie.
Es el preferido por los videojugadores experimentados, ya que la velocidad de transmisión de datos por cable entre el ratón y la computadora es óptima en juegos que requieren de una gran precisión.

Inalámbrico
En este caso el dispositivo carece de un cable que lo comunique con la computadora (ordenador), en su lugar utiliza algún tipo de tecnología inalámbrica. Para ello requiere un receptor que reciba la señal inalámbrica que produce, mediante baterías, el ratón. El receptor normalmente se conecta a la computadora a través de un puerto USB o PS/2. Según la tecnología inalámbrica usada pueden distinguirse varias posibilidades:
Radio Frecuencia (RF): Es el tipo más común y económico de este tipo de tecnologías. Funciona enviando una señal a una frecuencia de 2.4Ghz, popular en la telefonía móvil o celular, la misma que los estándares IEEE 802.11b y IEEE 802.11g. Es popular, entre otras cosas, por sus pocos errores de desconexión o interferencias con otros equipos inalámbricos, además de disponer de un alcance suficiente: hasta unos 10 metros.
Infrarrojo (IR): Esta tecnología utiliza una señal de onda infrarroja como medio de trasmisión de datos, popular también entre los controles o mandos remotos de televisiones, equipos de música o en telefonía celular. A diferencia de la anterior, tiene un alcance medio inferior a los 3 metros, y tanto el emisor como el receptor deben estar en una misma línea visual de contacto directo ininterrumpido para que la señal se reciba correctamente. Por ello su éxito ha sido menor, llegando incluso a desaparecer del mercado.
Bluetooth (BT): Bluetooth es la tecnología más reciente como transmisión inalámbrica (estándar IEEE 802.15.1), que cuenta con cierto éxito en otros dispositivos. Su alcance es de unos 10 metros o 30 pies (que corresponde a la Clase 2 del estándar Bluetooth).
El controlador
Es, desde hace un tiempo, común en cualquier equipo informático, de tal manera que todos los sistemas operativos modernos suelen incluir de serie un software controlador (driver) básico para que éste pueda funcionar de manera inmediata y correcta. No obstante, es normal encontrar software propio del fabricante que puede añadir una serie de funciones opcionales, o propiamente los controladores si son necesarios.

Uno, dos o tres botones
Hasta mediados de 2005, la conocida empresa Apple, para sus sistemas Mac apostaba por un ratón de un sólo botón, pensado para facilitar y simplificar al usuario las distintas tareas posibles. Actualmente ha lanzado un modelo con dos botones simulados virtuales con sensores debajo de la cubierta plástica, dos botones laterales programables, y una bola para mover el puntero, llamado Mighty Mouse.

En Windows, lo más habitual es el uso de dos o tres botones principales. En sistemas UNIX como GNU/Linux que utilicen entorno gráfico (X Window), era habitual disponer de tres botones (para facilitar la operación de copiar y pegar datos directamente). En la actualidad la funcionalidad del tercer botón queda en muchos casos integrada en la rueda central de tal manera que además de poder girarse, puede pulsarse.
Hoy en día cualquier sistema operativo moderno puede hacer uso de hasta estos tres botones distintos e incluso reconocer más botones extra a los que el software reconoce, y puede añadir distintas funciones concretas, como por ejemplo asignar a un cuarto y quinto botón la operación de copiar y pegar texto.
La sofisticación ha llegado a extremos en algunos casos, por ejemplo el MX610 de Logitech, lanzado en septiembre de 2005. Preparado anatómicamente para diestros, dispone de hasta 10 botones.
Problemas frecuentes
Puntero que se atasca en la pantalla: es el fallo más frecuente, se origina a causa de la acumulación de suciedad, frenando o dificultando el movimiento del puntero en la pantalla. Puede retirarse fácilmente la bola de goma por la parte inferior y así acceder a los ejes de plástico para su limpieza, usando un pequeño pincel de cerdas duras. Para retardar la aparición de suciedad en el interior del ratón es recomendable usar una alfombrilla de ratón. Este problema es inexistente con tecnología óptica, ya que no requiere partes mecánicas para detectar el desplazamiento. Es uno de los principales motivos de su éxito.
Pérdida de sensibilidad o contacto de los botones: se manifiesta cuando se pulsa una vez un botón y la computadora lo recibe como ninguno, dos o más clics consecutivos, de manera errónea. Esto se debe al desgaste de las piezas de plástico que forman parte de los botones del ratón, que ya no golpean o pulsan correctamente sobre el pulsador electrónico. En caso de uso frecuente, el desgaste es normal, y suele darse a una cifra inferior al milímetro por cada 5 años de vida útil.
Dolores musculares causados por el uso del ratón: si el uso de la computadora es frecuente, es importante usar un modelo lo más ergonómico posible, ya que puede acarrear problemas físicos en la muñeca o brazo del usuario. Esto es por la posición totalmente plana que adopta la mano, que puede resultar forzada, o puede también producirse un fuerte desgaste del huesecillo que sobresale de la muñeca, hasta el punto de considerarse una enfermedad profesional. Existen alfombrillas especialmente diseñadas para mejorar la comodidad al usar el ratón.

7 comentarios - componentes de una pc

@agusdmc32 -2
Este post no tiene comentarios, Soyez le premier!
@Morenamore_amore
hola, me pasa hace 2 dias q mi pc no me lee los pendrive ni nada q conecte al usb y no se q hacer