Matemáticas

Se llama matemáticas o matemática (del lat. mathematĭca, y éste del gr. τὰ μαθηματικά, derivado de μάθημα, conocimiento) al estudio de las propiedades y las relaciones de entes abstractos (números, figuras geométricas) a partir de notaciones básicas exactas y a través del razonamiento lógico.

Mucha gente piensa en las matemáticas en términos de reglas que deben ser aprendidas para poder manipular símbolos o estudiar números o formas en abstracto por el mero hecho de aprenderlas. La teoría matemática sí se desarrolla en abstracto: no depende de otra cosa fuera de sí misma. La verdad de la teoría se mide por la lógica y no por el experimento. Sin embargo, uno de sus usos más valiosos es el describir o modelar los procesos en el mundo real, de manera que hay una interacción constante entre las matemáticas puras y las matemáticas aplicadas.

Las matemáticas pueden considerarse como el estudio general de las estructura de sistemas. Puesto que el estudio no está relacionado con el mundo físico, se buscan pruebas formales rigurosas, en lugar de verificaciones experimentales. La teoría se presenta en términos de un pequeño número de verdades dadas (conocidas como axiomas), desde las que puede inferir toda una teoría. Por lo tanto, los objetivos son la generalidad en el planteamiento y el rigor en la prueba, fines que pueden explicar la preocupación tradicional de los matemáticos por la unificación de ramas aparentemente distintas de las matemáticas.
Véase también: Filosofía de la matemática

No es infrecuente encontrar a quien describe la matemática como una simple extensión de los lenguajes naturales humanos,[cita requerida] que utiliza una gramática y un vocabulario definidos con extrema precisión, cuyo propósito es la descripción y exploración de relaciones conceptuales y físicas. Recientemente, sin embargo, los avances en el estudio del lenguaje humano apuntan en una dirección diferente: los lenguajes naturales (como el español y el francés) y los lenguajes formales (como la matemática y los lenguajes de programación) son estructuras de naturaleza básicamente diferente.

Etimología

La palabra "matemática" (griego: μαθηματικά) «lo que se aprende» viene del griego antiguo μάθημα (máthēma), que quiere decir «campo de estudio o instrucción».

El significado se contrapone a μουική (musiké) «lo que se puede entender sin haber sido instruido», que refiere a poesía, retórica y campos similares, mientras que μαθηματική se refiere a las áreas del conocimiento que sólo pueden entenderse tras haber sido instruido en las mismas (astronomía, aritmética). Aunque el término ya era usado por los pitagóricos en el siglo VI a.C., alcanzó su significado más técnico y reducido de "estudio matemático" en los tiempos de Aristóteles (siglo IV a.C.). Su adjetivo es μαθηματικός (mathēmatikós), "relacionado con el aprendizaje", lo cual, de manera similar, vino a significar "matemático". En particular, μαθηματική τέχνη (mathēmatikḗ tékhnē; en latín ars mathematica), significa "el arte matemática".

La forma plural matemáticas viene de la forma latina mathematica (Cicerón), basada en el plural en griego τα μαθηματικά (ta mathēmatiká), usada por Aristóteles y que significa, a grandes rasgos, "todas las cosas matemáticas".

Historia

Históricamente, la matemática surgió con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos.[cita requerida] Estas tres necesidades pueden ser relacionadas en cierta forma con la subdivisión amplia de las matemáticas en el estudio de la cantidad, la estructura, el espacio y el cambio.

* Los diferentes tipos de cantidades (números) han jugado un papel obvio e importante en todos los aspectos cuantitativos y cualitativos del desarrollo de la cultura, la ciencia y la tecnología.
* El estudio de la estructura comienza al considerar las diferentes propiedades de los números, inicialmente los números naturales y los números enteros. Las reglas que dirigen las operaciones aritméticas se estudian en el álgebra elemental, y las propiedades más profundas de los números enteros se estudian en la teoría de números. Después, la organización de conocimientos elementales produjo los sistemas axiomáticos (teorías), permitiendo el descubrimiento de conceptos estructurales que en la actualidad dominan esta ciencia (e.g. estructuras categóricas). La investigación de métodos para resolver ecuaciones lleva al campo del álgebra abstracta. El importante concepto de vector, generalizado a espacio vectorial, es estudiado en el álgebra lineal y pertenece a las dos ramas de la estructura y el espacio.
* El estudio del espacio origina la geometría, primero la geometría euclídea y luego la trigonometría. En su faceta avanzada el surgimiento de la topología da la necesaria y correcta manera de pensar acerca de las nociones de cercanía y continuidad de nuestras concepciones espaciales.

Derivada

La comprensión y descripción del cambio en variables mensurables es el tema central de las ciencias naturales y del cálculo. Para resolver problemas que se dirigen en forma natural a relaciones entre una cantidad y su tasa de cambio, se estudian las ecuaciones diferenciales y de sus soluciones. Los números usados para representar las cantidades continuas son los números reales. Para estudiar los procesos de cambio se utiliza el concepto de función matemática. Los conceptos de derivada e integral, introducidos por Newton y Leibniz, representan un papel clave en este estudio, que se denomina Análisis. Es conveniente para muchos fines introducir los números complejos, lo que da lugar al análisis complejo. El análisis funcional consiste en estudiar problemas cuya incógnita es una función, pensándola como un punto de un espacio funcional abstracto.

Un campo importante en matemáticas aplicadas es la probabilidad y la estadística, que permiten la descripción, el análisis y la predicción de fenómenos que tienen variables aleatorias y que se usan en todas las ciencias.

El análisis numérico investiga los métodos para realizar los cálculos en computadoras.

La influencia de célebres matemáticos

Euclides (siglo IV a. C.), es el matemático más relevante de la antigüedad. Es muy conocido por una compilación de sus conocimientos de geometría, voz griega que significa medida de la tierra.

Tales de Mileto (siglo VI a. C.), conocido principalmente por su obra matemática y por la creencia de que el agua era la esencia de toda materia, estudió con espíritu crítico la estructura cósmica, lo que, según explica The New Encyclopædia Britannica, tuvo un efecto decisivo en el progreso del pensamiento científico.

El astrónomo Tycho Brahe llevaba largo tiempo anotando minuciosamente observaciones planetarias. Cuando leyó El misterio cosmográfico, quedó impresionado con la percepción matemática y astronómica de Kepler, que lo invitó a unírse en Benatky, localidad cercana a Praga que actualmente forma parte de la República Checa. Al verse obligado a tener que abandonar Graz debido a la intolerancia religiosa, Kepler aceptó la invitación. Al fallecer Brahe, él fue su sucesor; la corte imperial había perdido a un observador meticuloso, pero había ganado un matemático genial.

Su influencia babilónica

Los antiguos babilonios usaban el sistema sexagesimal, escala matemática que tiene por base el número sesenta. De este sistema la humanidad heredó la división del tiempo: el día en veinticuatro horas - o en dos períodos de doce horas cada uno -, la hora en sesenta minutos y el minuto en sesenta segundos.

La simplificación matemática de los árabes

La contribución árabe a la cultura europea fue su sistema de numeración, que reemplazó y sustituyó a la numeración romana, con base en las letras. En realidad, decir “números arábigos” no es lo más apropiado; parecería más indicado llamarlos “indoarábigos”. Lo cierto es que el matemático y astrónomo árabe Al-Juwārizmī (de cuyo nombre viene la palabra algoritmo), escribió en relación a este sistema, pero procedía de matemáticos hindúes, quienes lo habían ideado más de mil años antes, en el siglo III a.E.C.

Este sistema prácticamente no se conocía en Europa antes de que el distinguido matemático Leonardo Fibonacci (también llamado Leonardo de Pisa) lo introdujera en 1202 en su obra Liber abbaci (Libro del ábaco). A fin de demostrar las ventajas de este sistema, Fibonacci explicó: “Las nueve cifras hindúes que son: 9 8 7 6 5 4 3 2 1. Con ellas y el símbolo 0 [...] se puede escribir cualquier número”. En un principio los europeos tardaron en reaccionar, pero hacia finales de la Edad Media habían aceptado el nuevo sistema numérico, cuya sencillez estimuló y alentó el progreso de la ciencia.

Aportaciones mayas

Los mayas desarrollaron una avanzada civilización precolombina, con avances notables en la matemática, empleando el concepto del cero, y en la astronomía, calculando con bastante precisión los ciclos celestes.

Su influencia en la astronomía moderna

Kepler haciendo uso de las tablas de las observaciones planetarias de Brahe, estudió los movimientos cósmicos y llegó a sus propias conclusiones. Atestiguan su portentosa y enorme capacidad de trabajo los 7.200 cálculos complejos que realizó cuando estudió las tablas sobre Marte.

Crisis históricas

La matemática ha pasado por tres crisis históricas importantes:[3]

1. El descubrimiento de la inconmensurabilidad por los griegos, la existencia de los números irracionales que de alguna forma debilitó la filosofía de los pitagóricos.
2. Aparición del cálculo en el siglo XVII, con el temor de que fuera ilegítimo manejar infinitesimales.
3. La tercera fue el hallazgo de las antinomias, como la de Russell o la paradoja de Berry a comienzos del siglo XX, que atacaban los mismos cimientos de la materia.

Véase también: Medalla Fields, Millennium Prize Problems, Competiciones matemáticas, Matemática en el mundo, Matemática en Bizancio, y Matemática en el Islam medieval

Ramas

Las numerosas ramas de la matemática están muy interrelacionadas. He aquí una lista de secciones que podemos considerar en su estudio.

Fundamentos y Métodos

Teoría de conjuntos - Lógica matemática - Teoría de categorías

Investigación Operativa
Investigación operativa - Teoría de grafos - Teoría de juegos - Programación entera - Programación lineal - Simulación - Optimización - Método simplex - Programación dinámica

Números
Artículo principal: Número

Número natural - Número entero - Número racional - Número irracional - Número real - Número complejo - Cuaterniones - Octoniones - Sedeniones - Números hiperreales - Números infinitos - Dígito - Sistema de numeración - Número p-ádico

Análisis, continuidad y cambio

cálculo - Cálculo vectorial - Análisis - Ecuación diferencial - Sistemas dinámicos y teoría del caos - Funciones - Logaritmo - Sucesiones - Series - Análisis real - Análisis complejo - Análisis funcional - Álgebra de operadores

Estructuras

Álgebra abstracta - Teoría de números - Álgebra conmutativa - Geometría algebraica - Teoría de grupos - Monoides - Análisis - Topología - Álgebra lineal - Teoría de grafos - Teoría de categorías

Espacios

Topología - Geometría - Teoría de haces - Geometría algebraica - Geometría diferencial - Topología diferencial - Topología algebraica - Álgebra lineal - Cuaterniones y rotación en el espacio

Matemática discreta
Artículo principal: Matemática discreta

Combinatoria - Teoría de conjuntos - Probabilidad - Estadística - Teoría de la computación - Criptografía - Teoría de grafos - Teoría de juegos

Matemática aplicada
Artículo principal: Matemática aplicada

Estadística - Matemática discreta - Física matemática - Matemática financiera - Teoría de juegos - Optimización - Cálculo numérico - Lógica difusa

Conceptos erróneos

Lo que cuenta como conocimiento en matemática no se determina mediante experimentación, sino mediante demostraciones. No es la matemática, por lo tanto, una rama de la física (la ciencia con la que históricamente se encuentra más emparentada), puesto que la física es una ciencia empírica. Por otro lado, la experimentación desempeña un papel importante en la formulación de conjeturas razonables, por lo que no se excluye a ésta de la investigación en matemáticas.

La matemática no es un sistema intelectualmente cerrado, donde todo ya esté hecho. Aún existen gran cantidad de problemas esperando solución, así como una infinidad esperando su formulación.

Matemática no significa contabilidad. Si bien los cálculos aritméticos son importantes para los contables, los avances en matemática abstracta difícilmente cambiarán su forma de llevar los libros.

Matemática no significa numerología. La numerología es una pseudociencia que utiliza la aritmética modular para pasar de nombres y fechas a números a los que se les atribuye emociones o significados esotéricos, basados en la intuición.

http://es.wikipedia.org/wiki/Matem%C3%A1ticas

Matemáticas

Fuentes de Información - Matemáticas

Tags: matematica | peor | taringa | Post

Dar puntos
0 Puntos
Votos: 0 - T!score: 0/10
  • 0 Seguidores
  • 5.779 Visitas
  • 3 Favoritos

1 comentario - Matemáticas

@Luispremier77 Hace más de 2 años +1
"Este post no tiene comentarios, Soyez le premier!" despues de dos años....