La genética del comportamiento animal

La genética del comportamiento animal


Siempre me ha sorprendido la cantidad de complementos que se pueden llegar a encontrar para nuestras mascotas. Existen complementos más útiles (o inútiles) que otros, pero hay algunos que los considero especialmente crueles como son los dispositivos para controlar los ladridos de los perros. Estos dispositivos en forma de collar se basan en emitir ultrasonidos que castigan al perro cuando ladra.

No soy ningún experto en etología, pero siempre he pensado que los perros ladran por algún motivo y este método para evitarlo/controlarlo lo considero especialmente cruel (aunque en la descripción del producto digan que no). Aquí podéis ver un ejemplo de lo que os comento.


Por Temple Grandin y Mark J. Deesing
Departamento de Ciencia Animal
Colorado State University
Fort Collins, Colorado 80523-1171
Publicado en: Temple Grandin (comp.), Genetics and the Behavior of Domestic Animals. San Diego, California: Academic Press, 1998 (Cap. 1)

Traducción del Dr. Marcos Giménez-Zapiola

Un sol anaranjado brillante se está poniendo en el horizonte prehistórico. El cazador solitario vuelve al hogar tras un mal día de caza. Mientras atraviesa la última loma antes de llegar a casa, un movimiento rápido en unas rocas, a su derecha, atrae su atención. Al ir a mirar, descubre unos cachorros de lobo escondidos en una guarida poco profunda. Exclama "¡Huy... qué bueno! El enemigo... en su versión infantil".
Luego de una rápida revisión del lugar para ver si hay lobos adultos, se acerca con cautela. Los cachorros están visiblemente asustados y se amontonan unos contra otros mientras él se arrodilla ante la guarida... todos, excepto uno. El cachorro de pelaje más oscuro no demuestra ningún temor ante el acercamiento del hombre. "¡Ven aquí, pequeño enemigo! Déjame echarte un vistazo", le dice. Tras un intercambio mutuo de caricias del hombre y lamidas del cachorro, el hombre tiene una idea. "Si te llevo a casa conmigo esta noche, quizás mi mujer y mis hijos me perdonen por no haber cazado la cena... otra vez".

INTRODUCCIÓN

Los párrafos antecedentes describen un escenario hipotético sobre el primer hombre que domesticó al lobo. Aunque hemos tratado de poner claridad en este asunto, el hecho es que nadie sabe con precisión cómo o por qué se produjo este primer encuentro. La estimación arqueológica más remota indica que sucedió en el Período Glacial tardío, aproximadamente 14.000 años AC (Boessneck, 1985). Otro escenario sería que los lobos se hayan domesticado a sí mismos. La presunción es que lobos tranquilos, con bajos niveles de miedo, fueron más propensos a alimentarse de carroña cerca de los agrupamientos humanos. Tanto Coppinger y Smith (1983) como Zeuner (1963) sugieren que las especies salvajes que luego fueron domesticadas comenzaron como seguidores de campamentos. Se cree que algunos lobos se alimentaban cerca de los grupos humanos o seguían a las partidas de cazadores; el ganado vacuno salvaje supuestamente invadía los sembradíos, y los felinos salvajes podrían haber incursionado en los graneros en busca de ratones. Sin embargo, las evidencias más recientes, obtenidas mediante secuencias del ADN mitocondrial de 67 razas de perros y lobos de 27 distintos lugares indica que los perros podrían haberse separado de los lobos hace más de 100.000 años (Vita y otros, 1997). En cualquier caso, los lobos convertidos en acompañantes tendrían que haber sido fáciles de tratar y dispuestos a relacionarse con los seres humanos. En el transcurso de unas pocas generaciones, los primitivos humanos podrían haber convertido a los lobos en perros mediante la selección y la crianza de los más mansos. Miles de años atrás, los seres humanos no sabían que el comportamiento animal era heredable. Sin embargo, incluso hoy las personas que crían perros, caballos, cerdos, vacunos o pollos notan que hay diferencias en el comportamiento de las crías. Algunos animales son amistosos y se acercan fácilmente a la gente, mientras que otros son tímidos y nerviosos.
EFECTOS GENÉTICOS DE LA DOMESTICACIÓN

Price (1984) definió la domesticación como un proceso por el cual una población de animales se adapta al hombre y al ambiente de cautiverio mediante una combinación de cambios genéticos, que suceden a lo largo de generaciones, y acontecimientos evolutivos inducidos por el ambiente, que se repiten en cada generación. En experimentos selectivos a largo plazo, diseñados para estudiar las consecuencias de la selección de animales de comportamiento del tipo manso o domesticado, Belyaev (1979) y Belyaev y otros (1981) estudiaron los zorros criados para la producción de pieles. El zorro colorado (Vulpes fulva) ha sido criado en granjas peleteras seminaturales durante más de 100 años, siendo seleccionado por características de su piel, no del comportamiento. Sin embargo, exhiben tres respuestas características distintivas en su respuesta al hombre. El 30% eran extremadamente agresivos hacia el hombre, el 60% eran temerosos o agresivos-temerosos, y el 10% demostraban una reacción exploratoria tranquila, sin miedo ni agresividad. El objetivo de los experimentos era producir animales cuyo comportamiento fuera similar al de los perros domésticos. Mediante la selección y la reproducción de los individuos más mansos, en 20 años el experimento logró convertir zorros salvajes en zorros-perros mansos, del tipo de los Border Collies. La población altamente seleccionada por mansedumbre de estos zorros-perros buscaba activamente el contacto humano, y gimoteaban y movían la cola cuando la gente se les acercaba (Belyaev, 1979). Esta conducta contrastaba totalmente con la de los zorros salvajes, que exhibían una respuesta altamente agresiva y temerosa hacia los seres humanos. Keeler y otros (1970) describieron este comportamiento:
El zorro colorado salvaje (Vulpes fulva) es un manojo de nervios discordantes. Habíamos observado que el zorro colorado, cuando se lo somete por primera vez al cautiverio como adulto, despliega una cantidad de síntomas que se parecen mucho a los observados en casos de psicosis. Se parecen a una amplia gama de fobias, especialmente el miedo a los espacios abiertos, al movimiento, a los objetos de color blanco, a los sonidos, a los ojos, a los anteojos, a los objetos grandes y al hombre. Los animales exhiben pánico, ansiedad, miedo, aprehensión, y una desconfianza profunda en el entorno, que se manifiestan a través de: 1) posturas congeladas, de tipo cataléptico, acompañadas de una mirada perdida; 2) miedo a sentarse; 3) conducta retraída; 4) reacciones de fuga descontrolada, y 5) agresividad. Algunas veces, la tensión del cautiverio hace que se tornen profundamente perturbados y confusos, o les produce un estado de tipo depresivo. En algunos individuos, también se puede observar una excitación o inquietud extrema en respuesta a cambios múltiples en su entorno físico. Poco después de ser capturados, la mayoría de los zorros colorados adultos rompen sus dientes caninos contra las aberturas de nuestros cubículos de metal desplegado, en sus intentos por escapar. En un caso, un zorro recién capturado atacó frenéticamente la puerta de madera de su cubículo hasta caer muerto por agotamiento.
Aunque el estrés de la domesticación es grande, Belyaev (1979) y Belyaev y otros (1981) concluyeron que la selección por mansedumbre era efectiva a pesar de los muchos rasgos indeseables asociados con la mansedumbre. Por ejemplo, los zorros mansos tenían cría en la estación menos conveniente del año, desarrollaban un pelaje negro con rayas blancas y mostraban cambios en su patrón hormonal. Esto significa que su ciclo monoestral (celo una vez al año) se había perturbado, y los animales podían reproducirse en cualquier época del año. Además, hubo cambios de conducta simultáneos a los cambios en la posición de la cola y el perfil de las orejas, y a la aparición del hocico blanco, la raya blanca en la frente y el pelaje blanco en el hombro. El patrón de distribución del pelo blanco en la cabeza es parecido al de muchos animales domésticos (Belyaev, 1979). Los zorros más parecidos a los perros tenían manchas y franjas blancas en la cabeza, orejas caídas y colas alzadas en rulo, y se asemejaban más a los perros que a los zorros que evitaban a la gente. Los cambios en el comportamiento y en la morfología (apariencia externa) también se correlacionaron con cambios en los niveles de las hormonas sexuales. Los zorros mansos tenían niveles más altos de serotonina neurotransmisora (Popova y otros, 1975). La serotonina es reconocida como inhibidora de ciertos tipos de agresión (Belyaev, 1979), y los niveles de serotonina aumentan en el cerebro de quienes consumen Prozac (fluoxetina).

El estudio de la genética del comportamiento puede contribuir a explicar por qué la selección a favor del temperamento calmo se relacionó con cambios físicos y neuroquímicos en los zorros de Belyaev. Los genetistas del comportamiento y los zootécnicos están interesados en entender los efectos que tienen sobre la conducta animal las influencias genéticas y los cambios en el ambiente o en el aprendizaje.

BREVE REVISIÓN HISTÓRICA DEL ESTUDIO DEL COMPORTAMIENTO ANIMAL

Esta revisión histórica no pretende ser exhaustiva; nuestro objetivo es considerar algunos de los descubrimientos previos que tienen importancia para nuestro conocimiento actual del comportamiento animal, con énfasis particular en el tema de la influencia genética en la conducta de los animales domésticos.
En la primera mitad del siglo XVII, Descartes llegó a la conclusión de que "los cuerpos de los animales y los hombres actúan enteramente como máquinas, y se mueven de acuerdo con leyes meramente mecánicas" (citado en Huxley, 1874). Luego de Descartes, otros tomaron la tarea de explicar la conducta como una reacción a sucesos puramente físicos, químicos o mecánicos. Durante los siguientes tres siglos, el pensamiento científico acerca del comportamiento osciló entre la visión mecanicista, según la cual los animales son "autómatas" que se mueven por la vida sin conciencia ni sentido de su propia existencia, y una visión opuesta según la cual los animales tienen pensamientos y sentimientos similares a los de los seres humanos.

En El origen de las especies (1859), las ideas de Darwin sobre la evolución comenzaron a despertar serias dudas acerca de la visión mecanicista del comportamiento animal. Darwin observó que los animales comparten muchas características físicas, y fue uno de los primeros en ocuparse de la variación dentro de una misma especie, tanto en el comportamiento como en la apariencia física. Él creía que la selección artificial y la selección natural estaban íntimamente asociadas (Darwin, 1868), y delineó con gran sagacidad la teoría de la evolución sin tener ningún conocimiento de genética. En El origen del hombre (1871), llegó a la conclusión de que los rasgos del temperamento de los animales son heredados. También creía, como muchos otros científicos de su época, que los animales tienen sensaciones subjetivas y que pueden pensar. Escribió: "Las diferencias entre la mente del hombre y la de los animales superiores, por grandes que sean, son por cierto de grado y no de clase".

Otros científicos se hicieron eco de las implicancias de la teoría de Darwin en cuanto al comportamiento animal, y llevaron a cabo experimentos para investigar los instintos. Herrick (1908) observó el comportamiento de las aves salvajes con el objeto de determinar, primero, cómo se modifican sus instintos por obra de su capacidad de aprender, y segundo, el grado de inteligencia que alcanzan. Respecto del tema del pensamiento animal, Schroeder (1914) concluyó: "La solución, si algún día llega, difícilmente evite ilustrar, si no la mente animal, al menos la del hombre". Para los científicos que estudiaban el comportamiento animal en situaciones naturales, ya era evidente a fines del siglo XIX que el enfoque mecanicista no podía explicar todas las conductas.

El conductismo

A mediados del siglo XX, el pensamiento científico revirtió nuevamente hacia el enfoque mecanicista, y en Estados Unidos se impuso el conductismo. Los conductistas dejaban de lado tanto los efectos genéticos sobre el comportamiento como la capacidad de los animales para adentrarse en soluciones flexibles a los problemas. El fundador del conductismo, J.B. Watson (1930), afirmó que las diferencias en el ambiente pueden explicar todas las diferencias en el comportamiento, y no creía que la genética tuviera efecto alguno sobre la conducta. En The Behavior of Organisms (El comportamiento de los organismos), el psicólogo B.F. Skinner (1958) escribió que todo comportamiento puede ser explicado por medio de los principios de estímulo-respuesta y del condicionamiento operativo. La autora principal entrevistó al Dr. Skinner en la Universidad de Harvard en 1968. Ante una pregunta de ella sobre la necesidad de hacer investigación sobre el cerebro, él respondió: "No necesitamos saber acerca del cerebro, porque tenemos el condicionamiento operativo" (T. Grandin, comunicación personal, 1968). El condicionamiento operativo utiliza recompensas y castigos alimenticios para entrenar a los animales y modelar su comportamiento. En un experimento simple de la caja de Skinner, una rata puede ser entrenada a empujar una palanca para obtener comida cuando se enciende una luz verde, o a presionar muy rápidamente una palanca para evitar un choque eléctrico cuando se enciende una luz roja. La señal lumínica es el "estímulo condicionado". Las ratas y otros animales pueden ser entrenados para cumplir con una secuencia compleja de comportamientos, mediante el encadenamiento de una serie de respuestas condicionadas simples. Sin embargo, el comportamiento de una rata en una caja de Skinner es muy limitado. Se trata de un mundo con muy pocas variantes, y la rata tiene pocas oportunidades de utilizar sus comportamientos naturales. Sólo aprende a empujar una palanca para obtener comida o evitar un choque. Los principios de Skinner explican por qué una rata se comporta de cierta manera en los confines estériles de una caja plástica de 30 cm x 30 cm, pero no revelan mucho sobre el comportamiento de una rata en el basural local. Fuera del laboratorio, la conducta de una rata es más compleja.
Instintos versus aprendizaje

La influencia de Skinner en el pensamiento científico se debilitó en 1961, tras la publicación del artículo "The misbehavior of Organisms" (La inconducta de los organismos), de Breland y Breland. En él se describía cómo los principios skinnerianos chocaban con los instintos. Los Breland eran conductistas de la línea de Skinner, que trataron de aplicar los principios fundamentales del condicionamiento operativo a los animales amaestrados de las ferias y las exhibiciones circenses. Diez años antes de este artículo clásico, los Breland (1951) habían escrito "somos totalmente afirmativos y optimistas en el sentido de que los principios derivados del trabajo de laboratorio pueden ser aplicados al control extensivo del comportamiento animal en condiciones diferentes a las del laboratorio". Sin embargo, para 1961, luego de entrenar más de 6000 animales tan diversos como renos, cacatúas, mapaches, delfines y ballenas para ser exhibidos en zoológicos, museos de historia natural, muestras en grandes tiendas, convenciones de negocios y ferias, y programas de televisión, los Breland escribieron un segundo artículo, que fue publicado en la revista American Psychologist en 1961, en el cual sostuvieron "nuestra preparación en el conductismo no nos había preparado para el choque de algunos de nuestros fracasos". Uno de estos fracasos ocurrió cuando los Breland trataron de enseñar a unos pollos a permanecer quietos durante 10 a 12 segundos sobre una plataforma antes de recibir una recompensa alimenticia. Los pollos se quedaban quietos sobre la plataforma al principio del entrenamiento, sin embargo, una vez que aprendían a asociar la plataforma con la recompensa alimenticia, la mitad de ellos (50%) comenzó a arañar la plataforma, y otro 25% desarrolló otras conductas tales como picotear la plataforma. Los Breland salieron del paso de este desastre al desarrollar una prueba totalmente imprevista, que realizaba un pollo que encendía un aparato de música y bailaba. Comenzaron por enseñarle a los pollos a tirar de un gancho de goma que ponía en marcha una música. Cuando ésta arrancaba, los pollos saltaban sobre la plataforma y empezaban a arañarla y a picotearla hasta que se les entregaba la recompensa alimenticia. La prueba aprovechaba el comportamiento instintivo de los pollos en su búsqueda de alimento. La autora principal recuerda haber visto, en su adolescencia, una prueba similar en la Feria Estadual de Arizona, en la cual una gallina tocaba un piano en un pequeño granero rojo. La gallina picoteaba las teclas de un piano de juguete cuando se metía una moneda de un cuarto de dólar en una abertura, y dejaba de hacerlo cuando le llegaba la comida por una canaleta. Esta prueba funcionaba porque era muy parecida a la caja de Skinner de los ensayos de laboratorio.
Los Breland experimentaron otro fracaso notable cuando trataron de enseñar a mapaches a poner monedas en una alcancía. Dado que los mapaches son propensos a manipular objetos con las manos, esta tarea fue fácil al principio. A medida que el entrenamiento avanzaba, sin embargo, los mapaches comenzaron a frotar las monedas entes de depositarlas en la alcancía. Este comportamiento era semejante al movimiento de lavar, que los mapaches hacían instintivamente para pedir comida. Los animalitos tenían dificultades, al principio, para largar las monedas, y las retenían y frotaban. Cuando los Breland introducían una segunda moneda, los mapaches se hacían casi imposibles de entrenar. Mientras frotaban una moneda contra la otra "de una manera muy avarienta", los mapaches se pusieron cada vez peores a medida que pasaba el tiempo. Los Breland llegaron a la conclusión de que los comportamientos innatos se suprimían en las etapas iniciales del entrenamiento, y a veces, durante buena parte del mismo, pero a medida que éste avanzaba, los comportamientos instintivos para la obtención de alimentos reemplazaban gradualmente a los condicionados. Los animales eran incapaces de superar sus instintos, y entonces ocurría un conflicto entre los comportamientos condicionados y los instintivos.

La etología

Mientras Skinner y sus compatriotas norteamericanos refinaban los principios del condicionamiento operativo trabajando con millares de ratas y ratones, en Europa comenzaba a desarrollarse la etología. Esta consiste en el estudio del comportamiento animal en su ambiente natural, y el interés primario de los etólogos es el comportamiento instintivo o innato (Eibl-Eibesfeldt y Kramer, 1958). Básicamente, los etólogos creen que los secretos del comportamiento se encuentran en los genes del animal y en la forma en que esos genes han sido modificados a lo largo de la evolución para enfrentar entornos particulares. La tendencia etológica se originó en Whitman (1898), quien consideraba a los instintos como reacciones congénitas, que son tan constantes y características de cada especie que pueden tener significación taxonómica, al igual que las estructuras morfológicas. Una opinión similar fue sostenida por Heinroth (1918). Este entrenó pájaros que acababan de salir del cascarón, separándolos de ejemplares adultos de su misma especie, y comprobó que había movimientos instintivos que estas aves hacían sin haber observado a otras, tales como limpiarse las plumas, trinar o rasguñar.
El interés primario de los etólogos es entender los mecanismos y la programación que producen patrones innatos de comportamiento, y las motivaciones por las cuales los animales se comportan de la forma en que lo hacen. Konrad Lorenz (1939, 1965, 1981) y Niko Tinbergen (1948, 1951) catalogaron el comportamiento de numerosos animales en su medio ambiente natural. Juntos desarrollaron el etograma, que es una lista completa de todas las conductas que un animal despliega en su entorno natural. El etograma incluye los comportamientos innatos tanto como los adquiridos. Una contribución interesante a la etología provino de los estudios sobre la conducta de hacer rodar huevos que tiene el ganso gris (Lorenz, 1965, 1981). Lorenz observó que cuando una gansa clueca veía un huevo fuera de su nido, se le desencadenaba un programa instintivo para recuperarlo. La gansa se concentraba en el huevo, se erguía para extender su cuello más allá del mismo, y lo hacía rodar hacia atrás hasta meterlo en el nido. Este comportamiento se desenvolvía de una manera muy mecánica. Si se retiraba el huevo mientras la gansa comenzaba a extender el cuello, igualmente ella completaba el patrón de hacer rodar un huevo inexistente hacia el nido. Lorenz (1939) y Tinbergen (1948) llamaron a esto "patrón fijo de acción". Sorprendentemente, Tinbergen también descubrió que una gansa clueca puede ser estimulada a hacer el trabajo de rodar el huevo con cosas tales como una lata de cerveza o una pelota de béisbol. El patrón fijo de acción de hacer rodar el huevo de vuelta al nido puede ser desencadenado por cualquier cosa que haya fuera del nido que se parezca aun marginalmente a un huevo. Tinbergen constató que las gansas poseen un mecanismo genético de activación de este patrón fijo de acción. Lorenz y Tinbergen denominaron "estímulo señal" al objeto que desencadena la activación de un patrón fijo de acción. Cuando un ave madre ve la boca abierta de sus crías, esto desencadena el comportamiento maternal de alimentarlas, y la madre alimenta a sus crías. La boca abierta es otro ejemplo de estímulo señal, que actúa como un interruptor que enciende un programa determinado genéticamente (Herrick, 1908; Tinbergen, 1951). Los etólogos también explicaron la respuesta innata de escape de los gansos pequeños que recién han roto el cascarón. Cuando éstos son puestos a prueba con una silueta de cartón con forma de halcón que se mueve sobre ellos, esto desencadena una respuesta característica de escape. Los pequeños gansos se agazaparán o correrán. En cambio, cuando la silueta se invierte para que parezca un ganso, no hace efecto (Tinbergen, 1951). Diversos integrantes de la comunidad científica dudaban de la existencia de un instinto tan invariable, pues algunos científicos no lograron repetir los resultados de estos experimentos (Hirsh y otros, 1955). Recientemente, Canty y Gould (1995) replicaron estos experimentos clásicos y explicaron por qué habían fallado los otros. En primer lugar, los gansitos sólo responden a la silueta cuando tienen menos de siete días de edad. Segundo, se debe usar una silueta grande, que haga sombra. Tercero, los gansitos responden a diferentemente la percepción del predador, según las circunstancias. Por ejemplo, las aves sometidas a la prueba individualmente tratan de escapar de la silueta del halcón, y las aves criadas y expuestas en grupos tienden a agazaparse (Canty y Gould, 1995). No obstante ello, la base de la respuesta tiende a ser el miedo. Se ha comprobado que patitos de corta edad tienen una mayor variación en el pulso cardíaco cuando ven la silueta del halcón (Mueller y Parker, 1980).

Investigaciones de Balaban (1997) indican que las vocalizaciones y movimientos de cabeza de los pollos, que son propios de la especie, son controlados por grupos distintos de células cerebrales. Para demostrarlo, Balaban trasplantó células nerviosas de embriones de perdices a embriones de pollos. Los pollos nacidos de los huevos trasplantados tuvieron trinos y movimientos de cabeza típicos de las perdices.

¿Hay patrones fijos de acción similares en los mamíferos? Fentress (1973) dirigió un experimento con ratones, que mostró claramente que los animales tienen patrones de comportamiento instintivo propios de cada especie, que no requieren de aprendizaje. Ratones de un día de vida fueron anestesiados y se les amputó una parte de sus patas delanteras. Se les dejó una parte suficiente de esas patas como para que pudieran caminar con facilidad. Las operaciones fueron realizadas antes de que los ratones tuvieran movimientos plenamente coordinados, de modo que no tuvieron oportunidad para aprender. Cuando estos ratones se hicieron adultos, siguieron teniendo comportamientos propios de su especie, como el movimiento de lavarse la cara. Los ratones normales cierran los ojos justo antes de que las garras pasen sobre su cara, y los amputados también los cerraban antes de que la garra inexistente les tocara la cara. Fentress (1973) concluyó que este experimento demostraba la existencia de instintos en los mamíferos.

La ciencia del comportamiento, hoy

Dos años después del artículo de los Breland, Jerry Hirsh, de la Universidad de Illinois, escribió un artículo (1963) donde ponía énfasis en la importancia de estudiar las diferencias individuales. Según él: "Las diferencias individuales no son por accidente. Son generadas por propiedades de los organismos, que son tan fundamentales para la ciencia de la conducta como las propiedades termodinámicas lo son para la ciencia física". Hoy en día, los científicos reconocen las contribuciones tanto de los enfoques conductistas como de los etológicos para entender el comportamiento. La neurología moderna sostiene la visión darwiniana del comportamiento. Los cerebros de las aves y los mamíferos están construidos con el mismo diseño básico. Todos tienen tronco, sistema límbico, cerebelo y corteza cerebral. Esta es la parte del cerebro que se utiliza para el pensamiento y la solución flexible de problemas. La mayor diferencia entre los cerebros de las personas y los animales es el tamaño y la complejidad de la corteza. Los primates tienen una corteza más grande y compleja que los perros o los cerdos, los cerdos tienen una corteza más compleja que las ratas o los ratones. Además, todos los animales poseen patrones motores innatas y propias de cada especie, que interactúan con la experiencia y el aprendizaje para formar la conducta. Ciertas conductas de los animales, salvajes o domésticos, se rigen básicamente por programas innatos e invariables. Sin embargo, hay otras conductas donde los factores más importantes son la experiencia y el aprendizaje. Un principio básico a tener en cuenta es que los animales con cerebros grandes y complejos se rigen menos por los patrones innatos de conducta. Por ejemplo, el comportamiento de las aves se rige más por el instinto que el de los perros, mientras que un insecto tendrá patrones de comportamiento más invariables. Este principio estaba claro para Yerkes, quien escribió (1905):
Ciertos animales son marcadamente plásticos o voluntarios en su comportamiento, mientras otros son tan marcadamente fijos o instintivos. En los primates, la plasticidad ha alcanzado su mayor nivel conocido de desarrollo; en los insectos, la fijación ha triunfado, la acción instintiva es predominante. La hormiga parece haber sacrificado la capacidad de adaptarse al desarrollo de la capacidad para reaccionar de cierta manera con rapidez, exactitud y uniformidad. A grandes rasgos, los animales pueden ser divididos en dos clases: aquellos que tienen en un alto grado la capacidad de adaptarse inmediatamente a sus condiciones, y aquellos que parecen ser automáticos, pues dependen de sus tendencias instintivas más que en su adaptación rápida.
INTERACCIÓN DE LA GENÉTICA Y LA EXPERIENCIA

Algunos patrones de conducta son semejantes entre especies distintas, y algunos se encuentran solamente en una especie. Por ejemplo, los programas neurológicos que permiten a los animales caminar son similares en la mayoría de los mamíferos (Melton, 1991). Por otra parte, los rituales de cortejo de las aves son muy específicos a cada especie (Nottebohm, 1977). Algunos patrones innatos de comportamiento son muy rígidos, y la experiencia tiene escaso efecto sobre ellos; otras conductas instintivas pueden ser modificadas por el aprendizaje y la experiencia. El flehmen, que es la reacción de fruncido del labio superior del toro cuando olfatea una vaca en celo, o la reacción de arrodillarse (lordois) que tiene la rata en estro, son ejemplos de comportamientos rígidos. En los mamíferos recién nacidos, la conducta de mamar a la madre es otro caso de sistema de comportamiento muy arraigado. La respuesta de mamar no varía: los mamíferos recién nacidos chupan prácticamente cualquier cosa que se les ponga en la boca.
Un ejemplo de conducta innata que es afectada por el aprendizaje es la construcción de cuevas en las ratas. Boice (1977) descubrió que las ratas de Noruega silvestres y las ratas albinas de laboratorio cavan madrigueras complejas. El aprendizaje tiene algún efecto sobre la eficiencia del cavado, pero la configuración de las cuevas era la misma para las ratas silvestres y las domésticas. Las ratas albinas de laboratorio cavaban excelentes madrigueras la primera vez que se las colocaba en una jaula con piso de tierra. La construcción de nidos por parte de las cerdas paridas es otro ejemplo de interacción entre instinto y aprendizaje. Cuando una cerda tiene su primera parición, muestra un impulso incontrolable de hacer un nido. Se trata de una conducta muy arraigada que responde a cambios hormonales, pues se la puede inducir con inyecciones de prostaglandina F2a (Widowski y Curtis, 1989). No obstante, las cerdas ganan experiencia, con cada parición exitosa, acerca de cómo hacer un mejor nido.

Otros comportamientos son casi totalmente aprendidos. Algunas gaviotas aprenden a arrojar ostras sobre rocas para romperlas y comer su contenido, mientras que otras las arrojan en los caminos para que las rompan los automóviles (Grandin, 1995). Muchos animales, desde los monos hasta las aves, utilizan instrumentos para obtener comida. Griffin (1994) y Dawkins (1993) presentan numerosos ejemplos de animales que exhiben comportamientos aprendidos complejos y soluciones flexibles a problemas.

Las conductas innatas orientadas a obtener alimento, tales como pastorear, buscar carroña o cazar, dependen más del aprendizaje que las conductas usadas para consumir el alimento una vez obtenido. El comportamiento sexual, el anidamiento, las conductas de comer o de matar las presas, tienden a ser regidas más por el instinto (Gould, 1977). Dado que la búsqueda de alimento depende más del aprendizaje, los animales salvajes son más flexibles y pueden adaptarse a distintos medios ambientes. Las conductas usadas para matar o consumir alimentos pueden ser iguales en cualquier ambiente. Mayr (1974) denominó a estos distintos sistemas de comportamiento "abiertos" o "cerrados" a los efectos de la experiencia. Una leona que caza su presa, en una secuencia en la cual la reconoce a la distancia y la acecha cuidadosamente mientras se le aproxima, es un caso de sistema abierto. Herrick (1910) sostiene que "los detalles de la cacería varían cada vez que ella caza; por ende, ninguna combinación de arcos reflejos instalados en el sistema nervioso será adecuado para enfrentar las infinitas variaciones en los requerimientos para obtener alimento".

Interacciones complejas

Algunas de las interacciones entre la genética y la experiencia poseen efectos muy complejos en el comportamiento. En las aves, el pinzón aprende a cantar un trino exclusivo de su especie, incluso cuando se lo cría en una caja insonorizada, donde es incapaz de oír a otras aves (Nottebohm, 1970, 1979). Sin embargo, cuando se permite a los pinzones escuchar el canto de otros pájaros, desarrollan un trino más complejo. El patrón básico del canto del canario emerge aun en ausencia de modelos auditivos de la propia especie (compañeros de bandada) (Metfessel, 1935; Poulsen, 1959). Los canarios jóvenes imitan el canto de los canarios adultos que pueden escuchar, y cuando se los cría en grupos desarrollan patrones de canto compartidos por todos los miembros (Nottebohm, 1977). Muchas aves, como el gorrión de cresta blanca, el pinzón y el loro, pueden desarrollar cantos que equivalen a dialectos locales (Nottebohm y otros, 1976). Los gorriones pueden aprender cantos cuando se les hace oír grabaciones de tonos puros o sobretonos armónicos. Las aves entrenadas con sobretonos armónicos aprenden a cantar canciones con dichos sobretonos, pero pasado un año de aprendidas, el 85% de sus cantos vuelven a los patrones innatos, compuestos de tonos puros (Nowicki y Marler, 1988). Otros experimentos, dirigidos por Mundinger (1995), trataron de determinar la contribución relativa de la genética y el aprendizaje en el canto de los pájaros. Líneas endocriadas de canarios roller y border fueron estudiadas junto con cruzas híbridas de ambas. Además, ejemplares de cada línea fueron criados por hembras de la otra, para controlar los efectos del comportamiento maternal. Los machos de cada línea (roller y border) preferían cantar los patrones de canto innatos, en vez de copiar los de sus tutoras. Los híbridos preferían aprender algo de ambos cantos. Además, los canarios eran capaces de aprender trozos de cantos ajenos a su especie, pero mostraban una preferencia marcada por los propios. Comparando estos animales con los de las pruebas de Breland y Breland (1961), se observa que las aves pueden ser entrenadas para cantar un canto diferente al de su especie, pero los patrones de base genética tienen una fuerte tendencia a imponerse al aprendizaje. En esta revisión bibliográfica, se observa claramente que los patrones innatos pueden ser corregidos en los mamíferos, pero que finalmente los animales tienden a retornar a las conductas innatas.

4 comentarios - La genética del comportamiento animal