El post que buscas se encuentra eliminado, pero este también te puede interesar

Euler Leonhard

Euler Leonhard

Leonhard Euler nació el 15 de abril de 1707 en Basilea, Suiza. Murió el 7 de septiembre de 1783 en San Petersburgo, Rusia. Vivió en Rusia la mayor parte de su vida. Probablemente fue uno de los más grandes matemáticos de la historia, comparable a Gauss, Newton o Arquímedes. Realizó a pesar de ser matemático aportaciones a la astronomía, la mecánica, la óptica y la acústica. Entre sus obras se encuentran Instituciones del cálculo diferencial (1755), Instituciones del cálculo integral (1768-1770) e Introducción al álgebra (1770).

Historia.

Leonhard Euler, fue hijo de un clérigo, que vivía en los alrededores de Basilea. Su talento natural para las matemáticas se evidenció pronto por el afán y la facilidad con que dominaba los elementos, bajo la tutela de su padre .

A una edad temprana fue enviado a la Universidad de Basilea, donde atrajo la atención de Jean Bernoulli. Inspirado por un maestro así, maduró rápidamente, a los 17 años de edad, cuando se graduó Doctor, provocó grandes aplausos con un discurso probatorio, el tema del cual era una comparación entre los sistemas cartesiano y newtoniano.

Su padre deseaba que ingresara en el sagrado ministerio, y orientó a su hijo hacia el estudio de la teología. Pero , al contrario del padre de Bernoulli, abandonó sus ideas cuando vio que el talento de su hijo iba en otra dirección. Leonhard fue autorizado a reanudar sus estudios favoritos y, a la edad de diecinueve años, envió dos disertaciones a la Academia de París, una sobre arboladura de barcos, y la otra sobre la filosofía del sonido. Estos ensayos marcan el comienzo de su espléndida carrera.

Por esta época decidió dejar su país nativo, a consecuencia de una aguda decepción, al no lograr un profesorado vacante en Basilea. Así, Euler partió en 1727, año de la muerte de Newton, a San Petersburgo, para reunirse con sus amigos, los jóvenes Bernoulli, que le habían precedido allí algunos años antes .

En el camino hacia Rusia, se enteró de que Nicolás Bernoulli había caído víctima del duro clima nórdico; y el mismo día que puso pie sobre suelo ruso murió la emperatriz Catalina, acontecimiento que amenazó con la disolución de la Academia, cuya fundación ella había dirigido. Euler, desanimado, estuvo a punto de abandonar toda esperanza de una carrera intelectual y alistarse en la marina rusa. Pero, felizmente para las matemáticas, Euler obtuvo la cátedra de filosofía natural en 1730, cuando tuvo lugar un cambio en el sesgo de los asuntos públicos. En 1733 sucedió a su amigo Daniel Bernoulli, que deseaba retirarse, y el mismo año se casó con Mademoiselle Gsell, una dama suiza, hija de un pintor que había sido llevado a Rusia por Pedro el Grande.

matematica

Dos años más tarde, Euler dio una muestra insigne de su talento, cuando efectuó en tres días la resolución de un problema que la Academia necesitaba urgentemente, pese a que se le juzgaba insoluble en menos de varios meses de labor. Pero el esfuerzo realizado tuvo por consecuencia la pérdida de la vista de un ojo. Pese a esta calamidad, prosperó en sus estudios y descubrimientos; parecía que cada paso no hacía más que darle fuerzas para esfuerzos futuros. Hacia los treinta años de edad, fue honrado por la Academia de París, recibiendo un nombramiento; asimismo Daniel Bernoulli y Collin Maclaurin, por sus disertaciones sobre el flujo y el reflujo de las mareas. La obra de Maclaurin contenía un célebre teorema sobre el equilibrio de esferoides elípticos; la de Euler acercaba bastante la esperanza de resolver problemas relevantes sobre los movimientos de los cuerpos celestes.

En el verano de 1741, el rey Federico el Grande invitó a Euler a residir en Berlín. Esta invitación fue aceptada, y Euler vivió en Alemania hasta 1766. Cuando acababa de llegar, recibió una carta real, escrita desde el campamento de Reichenbach, y poco después fue presentado a la reina madre, que siempre había tenido un gran interés en conversar con hombres ilustres. Aunque intentó que Euler estuviera a sus anchas, nunca logró llevarle a una conversación que no fuera en monosílabos. Un día, cuando le preguntó el motivo de esto, Euler replicó: "Señora, es porque acabo de llegar de un país donde se ahorca a todas las personas que hablan". Durante su residencia en Berlín, Euler escribió un notable conjunto de cartas, o lecciones, sobre filosofía natural, para la princesa de Anhalt Dessau, que anhelaba la instrucción de un tan gran maestro. Estas cartas son un modelo de enseñanza clara e interesante, y es notable que Euler pudiera encontrar el tiempo para un trabajo elemental tan minucioso como éste, en medio de todos sus demás intereses literarios.

Su madre viuda vivió también en Berlín durante once años, recibiendo asiduas atenciones de su hijo y disfrutando del placer de verle universalmente estimado y admirado. En Berlín, Euler intimó con M. de Maupertuis, presidente de la Academia, un francés de Bretaña, que favorecía especialmente a la filosofía newtoniana, de preferencia a la cartesiana . Su influencia fue importante, puesto que la ejerció en una época en que la opinión continental aún dudaba en aceptar las opiniones de Newton. Maupertuis impresionó mucho a Euler con su principio favorito del mínimo esfuerzo, que Euler empleaba con buenos resultados en sus problemas mecánicos.

Un hecho que habla mucho en favor de la estima en que tenía a Euler, es que cuando el ejército ruso invadió Alemania en 1760 y saqueó una granja perteneciente a Euler, y el acto llegó al conocimiento del general, la pérdida fue inmediatamente remediada, y a ello se añadió un obsequio de cuatro mil florines, hecho por la emperatriz Isabel cuando se enteró del suceso. En 1766 Euler volvió a San Petersburgo, para pasar allí el resto de sus días, pero poco después de su llegada perdió la vista del otro ojo. Durante algún tiempo, se vio obligado a utilizar una pizarra, sobre la cual realizaba sus cálculos, en grandes caracteres. No obstante, sus discípulos e hijos copiaron luego su obra, escribiendo las memorias exactamente como se la dictaba Euler. Una obra magnífica, que era en extremo sorprendente, tanto por su esfuerzo como por su originalidad. Euler poseyó una asombrosa facilidad para los números y el raro don de realizar mentalmente cálculos de largo alcance. Se recuerda que en una ocasión, cuando dos de sus discípulos, al realizar la suma de unas series de diecisiete términos, no estaban de acuerdo con los resultados en una unidad de la quincuagésima cifra significativa, se recurrió a Euler. Este repasó el cálculo mentalmente, y su decisión resultó ser correcta.

En 1771, cuando estalló un gran fuego en la ciudad, llegando hasta la casa de Euler, un compatriota de Basilea, Peter Grimm, se arrojó a las llamas, descubrió al hombre ciego, y lo salvó llevándolo sobre sus hombros. Si bien se perdieron los libros y el mobiliario, se salvaron sus preciosos escritos. Euler continuó su profuso trabajo durante doce años, hasta el día de su muerte, a los setenta y seis años de edad.

Euler era como Newton y muchos otros, un hombre capacitado, que había estudiado anatomía, química y botánica. Como se dice de Leibniz, podría repetir la Eneida, del principio hasta el fin, e incluso podría recordar las primeras y las últimas líneas de cada página de la edición que solía utilizar. Esta capacidad parece haber sido el resultado de su maravillosa concentración, aquel gran elemento del poder inventivo, del que el mismo Newton ha dado testimonio, cuando los sentidos se encierran en intensa meditación y ninguna idea externa puede introducirse. La apacibilidad de ánimo, la moderación y la sencillez de las costumbres fueron sus características. Su hogar era su alegría, y le gustaban los niños. Pese a su desgracia, fue animoso y alegre, poseyó abundante energía; como ha atestiguado su discípulo M. Fuss, "su piedad era racional y sincera; su devoción, ferviente".



Linea de trabajo.

Los trabajos científicos de Euler abarcan prácticamente todas las matemáticas contemporáneas a él. En todas las ramas de las matemáticas hizo descubrimientos notables, que lo situaron en el primer lugar en el mundo. Euler fue capaz de comprender las matemáticas como un todo único, aunque enorme en el confluían un montón de ramas importantes y ante todo el Análisis. Laplace indicó que Euler fue el maestro común de todos los matemáticos de la segunda mitad del siglo XVIII.
La actividad de Euler, en lo fundamental tuvo una orientación algorítmica. A la construción de la teoría general llegaba partiendo de problemas concretos, los cuales tenían importancia práctica. En su herencia científica la práctica tiene un peso específico excepcionalmente grande. Aproximadamente el 40% de sus trabajos están dedicados a la matemática aplicada, la física, la mecánica, la hidromecánica, la teoría de la elasticidad, la balística, la construcción naval, la teoría de máquinas, la óptica y otras. Los rasgos algorítmicos son propios aún de sus trabajos de apariencia puramente teórica.Particularmente esto se advierte en los trabajos sobre análisis infinitesimal, el cual en esencia se construye como el aparato matemático de la mecánica clásica y la física.
matematicos

Desde 1727 hasta 1783 la pluma de Euler no había cesado de extender las fronteras de prácticamente todas las ramas tanto e la matemática pura como aplicada, desde los niveles más elementales a los más avanzados. Además, Euler escribía casi siempre utilizando el lenguaje y las notaciones que aún usamos hoy, pues ningún otro matemático contribuyó en tal medida como él a dar su forma actual a la matemática que hoy llamamos clásica, siendo el más feliz inventor de notaciones de toda la historia de la matemática. A su llegada a San Petersburgo en 1727 se vio encargado de ciertos experimentos relativos al disparo de cañones, y en la exposición manuscrita de los resultados obtenidos, escrita probablemente en 1727 ó 1728, Euler utilizaba ya la letra e más de una docena de veces para representar la base del sistema de logaritmos naturales. La idea que representa este número había sido bien conocida prácticamente desde que se inventaron los logaritmos más de un siglo antes, y, sin embargo, no se había introducido ninguna notación estándar para representarlo. En una carta a Goldbach de 1731, Euler vuelve a utilizar su letra e para "el número cuyo logaritmo hiperbólico es igual a 1"; esta notación apareció impresa por primera vez en la Mechanica de Euler, publicada en 1736, obra en la que se presenta por primera vez la mecánica newtoniana en forma analítica. Este símbolo, que quizá le vino sugerido a Euler por la primera letra de la palabra "exponencial", no tardó en ser admitido universalmente. La consagración definitiva del uso de la letra griega pi para representar la razón de la longitud dela circunferencia al diámetro, se debe también en buena medida a Euler, aunque ya se había utilizado en 1706, un año antes del nacimiento de Euler, en la Synopsis Palmoriorum Matheseos, o "Nueva introducción a la matemática" por William Jones (1675-1749). Fue, sin embargo, la adopción del símbolo por Euler, en 1737 en primer lugar, y después en sus popularísimos textos, lo que extendió su uso universalmente. El símbolo i para la raíz cuadrada de -1 es otra de las notaciones introducidas por Euler por primera vez, aunque en este caso lo adoptó hacia finales de su vida, en 1777. Probablemente este retraso se deba a que en sus obras anteriores había utilizado la letra i de una manera bastante sistemática para representar un "número infinito", en un sentido análogo pero no análogo al del i de Wallis.
De hecho Euler utilizó i para la raíz cuadrada de -1 en un manuscrito fechado en 1777, tal manuscrito no se publicó hasta 794, de manera que fue la adopción de dicho símbolo por Gauss en su obra clásica Disuisitiones arithmeticae, de 1808, la que le aseguró un puesto definitivo en la historia de las notaciones matemáticas. Los tres símbolos e, e i de los que Euler fue en gran medida responsable, como hemos visto se relacionan con los dos enteros más importantes, 0 y 1, por medio de la famosa igualdad
e i + 1= 0
en la que figuran los cinco números más importantes y las más importantes operaciones y la relación de toda la matemática. Lo equivalente a esta igualdad, en forma generalizada, aparecen el más famoso de todos los textos de Euler, la Introductio in analysin infinitorum, publicado en 1748, pero el nombre de Euler no aparece hoy asociado a ninguno de los símbolos que intervienen en esta relación, sino que la llamada "constante de Euler", la que recibe este honor y se la considera una sexta constante matemática importante.
No sólo se utilizan hoy las notaciones introducidas por Euler para designar números importantes. También en geometría, en álgebra, en trigonometría y en análisis nos encontramos a cada momento con el uso de los símbolos, terminología e ideas debidas a Euler. El uso de las letras minúsculas a, b, c, para los lados de un triángulo y de las correspondientes letras mayúsculas A, B, C, para los ángulos respectivamente opuestos a ellos, proviene de Euler. La notación lx para el logaritmo de x, el uso tan familiar hoy de la sigma para representar una suma y, quizá la más importante de todas, la notación f(x) para una función de x, utilizada en los Commentarii de San Petersburgo de 1734-1735, son otras de las notaciones de Euler que seguimos utilizando en la actualidad. Se puede afirmar, pues, sin ninguna duda, que nuestro sistema de notaciones matemáticas es hoy lo que es debido más a Euler que a ningún otro matemático a lo largo de la historia.



Trabajos importantes.


Contribución a las notaciones: Fue el primero en emplear la notación f(x) proporcionando más comodidad frente a los rudimentarios métodos del cálculo infinitesimal existentes hasta la fecha, iniciados Newton y Leibniz, pero desarrollados basándose en las matemáticas del último. También introdujo el símbolo Σ para expresar sumatorios.


• El número "e" como límite de una sucesión y cuya propiedad más importante es la de su derivada equivalente.


• Unió los símbolos matemáticos más trascendentes ( e, pi, i, -1) en forma de una ecuación, conocida como la Fórmula de Euler.


• En relación con lo anterior sentó las bases del análisis matemático avanzado al generalizar su fórmula para que conectase las funciones exponenciales y las trigonométricas. Con ello también desarrolló el cálculo complejo.


• Euler ya empleaba las series de Fourie antes de que el mismo Fourier las descubriera y las ecuaciones de Lagrange del cálculo variacional, las Ecuaciones de Euler-Lagrange.


Mecánica de Newton: En su tratado de 1739 introdujo explícitamente el concepto de partícula y de masa puntual. Introdujo la notación vectorial para representar la velocidad y la aceleración, que definiría todo el estudio de la Mecánica hasta Lagrange.


Sólido Rígido: Definió los tres ángulos de Euler para describir la posición. Publicó el teorema principal del movimiento (siempre existe un eje de rotación instantáneo). Solución del movimiento libre (consiguió despejar los ángulos en función del tiempo).


Hidrodinámica: Estudió el flujo de un fluido ideal incompresible, detallando las Ecuaciones de Euler de la Hidrodinámica.


Arquitectura e Ingeniería: Desarrolló la ley que lleva su nombre sobre el pandeo de vigas y generó una nueva rama de ingeniería con sus trabajos sobre la carga crítica de las columnas.


Ecuaciones diferenciales: Se llama método de Euler al método numérico consistente en ir incrementando paso a paso la variable independiente y hallando la siguiente imagen con la derivada.


Electromagnetismo: Adelantándose más de cien años a Maxwell previó el fenómeno de la Presión de Radiación, fundamental en la teoría unificada del Electromagnetismo. En los cientos de trabajos de Euler se encuentran referencias a problemas y cuestiones tremendamente avanzadas para su tiempo, que no estaban al alcance de la ciencia de su época.


• Publicó trabajos sobre el movimiento de la luna.


Problema de los puentes de Königsberg[b/]. Demostró que un esquema de dichos puentes no podía recorrerse. Este problema pudo haber sido la primera aplicación en teoría de grafos o en topología, (con el desarrollo del problema de los puentes de Königsberg por Euler se da inicio a la topología).


Geometría: Desarrolló lo que se llama característica de Euler o teorema de poliedros de Euler. Básicamente es buscar una relación entre número de caras, aristas y vértices en los poliedros. Utilizó esta idea para demostrar que no existían más poliedros regulares que los conocidos hasta entonces. Dentro del campo de la geometría analítica descubrió además que tres de los puntos notables de un triángulo (baricentro, ortocentro y circuncentro) podían obedecer a una misma ecuación, es decir, a una misma recta. A la recta que contiene el baricentro, ortocentro y circuncentro se le denominó "Recta de Euler" en honor a este.


Series infinitas: Logró hallar en 1736 la suma de los recíprocos de los cuadrados, buscada por grandes matemáticos como Jacques Bernoulli (hijo de Jean Bernoulli), es decir:
Euler Leonhard
Asimismo logró calcular la suma de los recíprocos de las cuartas y sextas potencias:
Euler Leonhard
matematica
También descubrió el conocido número:
matematicos



Euler Leonhard



Fuentes:

http://www.mat.usach.cl/histmat/html/eule.html
http://es.wikipedia.org/wiki/Leonhard_Euler
http://thales.cica.es/rd/Recursos/rd97/Biografias/28-2-B-E.html
http://www.astromia.com/biografias/euler.htm

2 comentarios - Euler Leonhard

@reptante
Estoy convencido de que este tipo junto a sus colegas newton y gauss no eran humanos. Eran extraterrestres con una inteligencia superior.
@enzoeuler -1
QUE GRANDE MI TATARA ABUELO