Motor de 4 Tiempos / 2 Tiempos

Motor de 4 Tiempos / 2 Tiempos


¿Cómo funciona un motor de 4 tiempos?

Un motor de combustión interna es básicamente una máquina que mezcla oxígeno con combustible gasificado. Una vez mezclados íntimamente y confinados en un espacio denominado cámara de combustión, los gases son encendidos para quemarse (combustión).
Debido a su diseño, el motor, utiliza el calor generado por la combustión, como energía para producir el movimiento giratorio que conocemos.

En la figura animada que aparece más abajo se puede apreciar el funcionamiento del motor de 4 tiempos.
1er tiempo: Carrera de admisión. Se abre la vávula de admisión, el pistón baja y el cilindro se llena de aire mezclado con combustible.
2do tiempo: Carrera de compresión. Se cierra la válvula de admisión, el pistón sube y comprime la mezcla de aire/gasolina.
3er tiempo: Carrera de expansión. Se enciende la mezcla comprimida y el calor generado por la combustión expande los gases que ejercen presión sobre el pistón.
4to tiempo: Carrera de escape. Se abre la vávula de escape, el pistón se desplaza hacia el punto muerto superior, expulsando los gases quemados.

motor


partes


¿De qué partes consta un motor de combustión interna de cuatro tiempos?

A) Válvula de admisión.
Válvula idéntica a la de escape, que normalmente se encuentra junto a aquella. Se abre en el momento adecuado para permitir que la mezcla aire-combustible procedente del carburador, penetre en la cámara de combustión del motor para que se efectúe el tiempo de admisión. Hay motores que poseen una sola válvula de admisión por cilindro; sin embargo, los más modernos pueden tener más de una por cada cilindro.

B) Tapa de Valvulas.

C) Conducto de admisión.
Es el canale interior que tiene la culata para la entrada de gases. Se distingue de los correspondientes colectores en que están dentro de la culata y, por tanto, tienen paredes siempre metálicas del mismo material que ella (generalmente aluminio). La forma de los conductos determina cómo entran los gases de admisión.

D) Tapa de Cilindros.

Cubre el bloque de cilindros (al que va unido mediante tornillos o pernos) por la parte superior, y contiene los conductos por los que entran y salen los gases al motor, las canalizaciones para la circulación de los líquidos refrigerante y lubricante, y además alojan el mecanismo de la distribución. Tanto desde el punto de vista de la fabricación como del diseño, se trata de uno de los elementos más complejos del motor, pues además de lo mencionado, debe soportar elevados esfuerzos térmicos. Para su fabricación se utilizan aleaciones de aluminio, aprovechando su elevada conductividad térmica (evacua muy bien el calor), aunque en los motores más antiguos todavía se pueden ver culatas de fundición.

E) Camara refrigerante.
Sólo entre el 20 y el 30 porciento de la energía liberada por el combustible durante el tiempo de explosión en un motor se convierte en energía útil; el otro 70 u 80 porciento restante de la energía liberada se pierde en forma de calor. Las paredes interiores del cilindro o camisa de un motor pueden llegar a alcanzar temperaturas aproximadas a los 800 ºC. Por tanto, todos los motores requieren un sistema de refrigeración que le ayude a disipar ese excedente de calor.

Entre los métodos de enfriamiento más comúnmente utilizados se encuentra el propio aire del medio ambiente o el tiro de aire forzado que se obtiene con la ayuda de un ventilador. Esos métodos de enfriamiento se emplean solamente en motores que desarrollan poca potencia como las motocicletas y vehículos pequeños. Para motores de mayor tamaño el sistema de refrigeración más ampliamente empleado y sobre todo el más eficaz, es el hacer circular agua a presión por el interior del bloque y la culata.

Para extraer a su vez el calor del agua una vez que ha recorrido el interior del motor, se emplea un radiador externo compuesto por tubos y aletas de enfriamiento.. Cuando el agua recorre los tubos del radiador transfiere el calor al medio ambiente ayudado por el aire natural que atraviesa los tubos y el tiro de aire de un ventilador que lo fuerza a pasar a través de esos tubos.

En los coches o vehículos antiguos, las aspas del ventilador del radiador y la bomba que ponía en circulación el agua se movían juntamente con el cigüeñal del motor por medio de una correa de goma, pero en la actualidad se emplean ventiladores con motores eléctricos, que se ponen en funcionamiento automáticamente cuando un termostato que mide los grados de temperatura del agua dentro del sistema de enfriamiento se lo indica. El radiador extrae el calor del agua hasta hacer bajar su temperatura a unos 80 ó 90 grados centígrados, para que el ciclo de enfriamiento del motor pueda continuar.

En los coches modernos el sistema de enfriamiento está constituido por un circuito cerrado, en el que existe un cámara de expansión donde el vapor del agua caliente que sale del motor se enfría y condensa. Esta cámara de expansión sirve también de depósito para poder mantener la circulación del agua fresca por el interior del motor.

En invierno, en aquellos lugares donde la temperatura ambiente desciende por debajo de 0 ºC (32 ºF), es necesario añadir al agua de enfriamiento del motor sustancias “anticongelante” para evitar su congelación, ya que por el efecto de expansión que sufre ésta al congelarse puede llegar a romper los tubos del sistema, o dejar de circular, lo que daría lugar a que el motor se gripara (fundiera).

F) Block de Cilindros.
Es la pieza que aloja los cilindros, con los pistones y bielas, y que soporta al cigüeñal. El bloque está cerrado por arriba por la culata (una o varias) y, por debajo, por el cárter inferior o de aceite. Actualmente, todos los bloques que se usan en automóviles de producción (que son a los que no referimos) tienen un solo cigüeñal y ninguno tiene disposición radial o «en estrella».

Según la disposición de los cilindros, puede ser en línea si los ejes de todos los cilindros son paralelos, y hay una culata común para todos los cilindros; en «V» si hay dos filas de cilindros cuyos ejes forman un ángulo, y hay una culata para cada una de ellas; en «V estrecha» si hay dos filas de cilindros cuyos ejes forman un ángulo, y hay una culata común para las dos filas; en «W» si hay más de dos filas de cilindros cuyos ejes forman dos o más ángulos; horizontales opuestos (o «bóxer») si hay dos filas de cilindros cuyos ejes son paralelos, y hay una culata para cada fila.

Según la construcción, puede ser cerrado («closed deck») o abierto («open deck»). En bloque cerrado está hecho de una pieza y sujeta al cigüeñal mediante casquillos de bancada. El bloque abierto está hecho de dos piezas, el bloque de cilindros propiamente dicho por arriba y, por abajo, el cárter superior o cárter del cigüeñal; entre las dos piezas envuelven al cigüeñal. Un motor de cilindros horizontales opuestos es siempre abierto porque cada fila de cilindros está en una parte independiente.

Según el tipo de cilindros, puede ser con camisas intercambiables o sin ellas. Las camisas intercambiables son piezas independientes que se añaden al bloque durante la fundición o la mecanización, para que estén en contacto con los pistones. Si no lleva camisas intercambiables, las paredes del cilindro tienen el tratamiento superficial adecuado para que soporte la fricción con los pistones.

Según el material con el que están construidos, puede ser de hierro (fundición gris o fundición con grafito), de aluminio o de magnesio (reforzado con aluminio).

G) Cárter.
Es el lugar donde se deposita el aceite lubricante que utiliza el motor. Una vez que la bomba de aceite distribuye el lubricante entre los diferentes mecanismos, el sobrante regresa al cárter por gravedad, permitiendo así que el ciclo de lubricación continúe, sin interrupción, durante todo el tiempo que el motor se encuentre funcionando.

H) Aceite de motor.
Su función principal es la de lubricar todas las partes móviles del motor, con el fin de disminuir el rozamiento y la fricción entre ellas. De esa forma se evita el excesivo desgaste de las piezas, teniendo en cuenta que el cigüeñal puede llegar a superar las 6 mil revoluciones por minuto.

Como función complementaria el aceite lubricante ayuda también a refrescar los pistones y los cojinetes, así como mantenerlos limpios. Otra de las funciones del lubricante es ayudar a amortiguar los ruidos que produce el motor cuando está funcionando.

El aceite lubricante en sí ni se consume, ni se desgasta, pero con el tiempo se va ensuciando y sus aditivos van perdiendo eficacia hasta tal punto que pasado un tiempo dejan de cumplir su misión de lubricar. Por ese motivo periódicamente el aceite se debe cambiar por otro limpio del mismo grado de viscosidad recomendada por el fabricante del motor. Este cambio se realiza normalmente de acuerdo con el tiempo que estipule el propio fabricante, para que así los aditivos vuelvan a ser efectivos y puedan cumplir su misión de lubricar. Un tercio del contenido de los aceites son aditivos, cuys propiedades especiales proporcionan una lubricación adecuada.

I) Árbol de levas.
Eje parecido al cigüeñal, pero de un diámetro mucho menor, compuesto por tantas levas como válvulas de admisión y escape tenga el motor. Encima de cada leva se apoya una varilla empujadora metálica, cuyo movimiento alternativo se transmite a los balancines que abren y cierran las válvulas de admisión o las de escape.

J) Válvula de escape.
Pieza metálica en forma de clavo grande con una gran cabeza, cuya misión es permitir la expulsión al medio ambiente de los gases de escape que se generan dentro del cilindro del motor después que se quema la mezcla aire-combustible en durante el tiempo de explosión.
Normalmente los motores poseen una sola válvula de escape por cilindro; sin embargo, en la actualidad algunos motores modernos pueden tener más de una por cada cilindro.

K) Bujía de encendido.
Electrodo recubierto con un material aislante de cerámica. En su extremo superior se conecta uno de los cables de alta tensión o voltaje procedentes del distribuidor, por donde recibe una carga eléctrica de entre 15 mil y 20 mil volt aproximadamente. En el otro extremo la bujía posee una rosca metálica para ajustarla en la culata y un electrodo que queda situado dentro de la cámara de combustión.

La función de la bujía es hacer saltar en el electrodo una chispa eléctrica dentro de la cámara de combustión del cilindro cuando recibe la carga de alta tensión procedente de la bobina de ignición y del distribuidor. En el momento justo, la chispa provoca la explosión de la mezcla aire-combustible que pone en movimiento a los pistones. Cada motor requiere una bujía por cada cilindro que contenga su bloque.

L) Conducto de escape.
Es el canal interior que tiene la culata para la salida de gases. Se distingue de los correspondientes colectores en que están dentro de la culata y, por tanto, tienen paredes siempre metálicas del mismo material que ella (generalmente aluminio). La forma del conducto determina cómo salen los gases de escape.

M) Cilindro.
Referido al bloque motor, cada uno de los espacios con esa forma que tiene para alojar parte de la cámara de combustión, el pistón y parte de la biela. Cuando se habla del volumen de un cilindro no se consideran sus medidas reales, sino un cilindro teórico donde la base es el diámetro y la altura el desplazamiento del pistón entre sus dos extremos. En un motor de varios cilindros, se llama «cilindrada unitaria» al volumen de cada uno de ellos.

N) Pistón.
El pistón constituye una especie de cubo invertido, de aluminio fundido en la mayoría de los casos, vaciado interiormente. En su parte externa posee tres ranuras donde se insertan los aros de compresión y el aro rascador de aceite. Mas abajo de la zona donde se colocan los aros existen dos agujeros enfrentados uno contra el otro, que sirven para atravesar y fijar el bulón que articula el pistón con la biela.

O) Biela.
Es una pieza metálica de forma alargada que une el pistón con el cigüeñal para convertir el movimiento lineal y alternativo del primero en movimiento giratorio en el segundo. La biela tiene en cada uno de sus extremos un punto de rotación: uno para soportar el bulón que la une con el pistón y otro para los cojinetes que la articula con el cigüeñal. Las bielas puedes tener un conducto interno que sirve para hacer llegar a presión el aceite lubricante al pistón.

P) Cigueñal.
Constituye un eje con manivelas, con dos o más puntos que se apoyan en una bancada integrada en la parte superior del cárter y que queda cubierto después por el propio bloque del motor, lo que le permite poder girar con suavidad. La manivela o las manivelas (cuando existe más de un cilindro) que posee el cigüeñal, giran de forma excéntrica con respecto al eje. En cada una de las manivelas se fijan los cojinetes de las bielas que le transmiten al cigüeñal la fuerza que desarrollan los pistones durante el tiempo de explosión.

MOTOR DE CUATRO TIEMPOS

El primer motor de cuatro tiempos fue desarrollado en 1876 por Nikolaus Otto, de aquí que se le llame también motor Otto. El motor de cuatro tiempos es probablemente el tipo de motor mas común en el mundo.

Motor convencional del tipo Otto

El motor convencional del tipo Otto es de cuatro tiempos (4T), aunque en fuera borda y vehículos de dos ruedas hasta una cierta cilindrada se utilizó mucho el motor de dos tiempos (2T). El rendimiento térmico de los motores Otto modernos se ve limitado por varios factores, entre otros la pérdida de energía por la fricción y la refrigeración.

La termodinámica nos dice que el rendimiento de un motor alternativo depende en primera aproximación del grado de compresión. Esta relación suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de octano para evitar el fenómeno de la detonación, que puede producir graves daños en el motor. La eficiencia o rendimiento medio de un buen motor Otto es de un 20 a un 25%: sólo la cuarta parte de la energía calorífica se transforma en energía mecánica.

Los cuatro tiempos del ciclo son: Entrada, Compresión, Explosión, y Escape. Cada uno corresponde a un recorrido de pistón (ida o regreso) por lo que el ciclo completo se lleva a cabo en dos vueltas completas del cigüeñal (eje donde convierte el movimiento del pistón en movimiento circular).

1. Entrada:
Durante el clico de entrada, el pistón se mueve hacia abajo, succionando una nueva carga de mezcla vaporizada de aire/combustible. En el cilindro izquierdo de la ilustración se puede ver la válvula de admisión abierta, por la acción del mecanismo leva/levantador. La válvula de escape se mantiene cerrada por la acción de un resorte.


2. Compresión:
A medida que el pistón sube comprime la mezcla ya que la válvula de entrada ya esta cerrada. La inercia del volante (rueda pesada que esta conectada al cigüeñal), empuja el pistón hacia arriba, comprimiendo la mezcla aire/combustible.

3. Explosión:
En el punto máximo del ciclo de compresión la bujía lanza la chispa, iniciando la combustión del combustible comprimido. Al quemarse el combustible este se expande, empujando el pistón hacia abajo.

4. Escape:
En el punto mas bajo del ciclo de escape la válvula de escape se abre por acción del mecanismo leva/levantador. El movimiento hacia arriba del pistón saca el combustible quemado (humo) fuera del cilindro.

Ciclo completo:
funcionamiento


Motores Diésel

En teoría, el ciclo diésel difiere del ciclo Otto en que la combustión tiene lugar en este último a volumen constante en lugar de producirse a una presión constante. La mayoría de los motores diésel son asimismo del ciclo de cuatro tiempos, salvo los de tamaño muy grande, ferroviarios o marinos, que son de dos tiempos. Las fases son diferentes de las de los motores de gasolina.

En la primera carrera, la de admisión, el pistón sale hacia fuera, y se absorbe aire hacia la cámara de combustión. En la segunda carrera, la fase de compresión, en que el pistón se acerca. el aire se comprime a una parte de su volumen original, lo cual hace que suba su temperatura hasta unos 850 °C. Al final de la fase de compresión se inyecta el combustible a gran presión mediante la inyección de combustible con lo que se atomiza dentro de la cámara de combustión, produciéndose la inflamación a causa de la alta temperatura del aire. En la tercera fase, la fase de trabajo, la combustión empuja el pistón hacia fuera, trasmitiendo la fuerza longitudinal al cigüeñal a través de la biela, transformándose en fuerza de giro par motor. La cuarta fase es, al igual que en los motores Otto, la fase de escape, cuando vuelve el pistón hacia dentro.

Algunos motores diésel utilizan un sistema auxiliar de ignición para encender el combustible al arrancar el motor y mientras alcanza la temperatura adecuada.

La eficiencia o rendimiento (proporción de la energía del combustible que se transforma en trabajo y no se pierde como calor) de los motores diésel dependen, de los mismos factores que los motores Otto, es decir de las presiones (y por tanto de las temperaturas) inicial y final de la fase de compresión. Por lo tanto es mayor que en los motores de gasolina, llegando a superar el 40%. en los grandes motores de dos tiempos de propulsión naval. Este valor se logra con un grado de compresión de 20 a 1 aproximadamente,contra 9 a 1 en los Otto. Por ello es necesaria una mayor robustez, y los motores diésel son, por lo general, más pesados que los motores Otto. Esta desventaja se compensa con el mayor rendimiento y el hecho de utilizar combustibles más baratos.

Los motores diésel grandes de 2T suelen ser motores lentos con velocidades de cigüeñal de 100 a 750 revoluciones por minuto (rpm o r/min), mientras que los motores de 4T trabajan hasta 2.500 rpm (camiones y autobuses) y 5.000 rpm. (automóviles)

ciclos




como funciona


MOTOR DE DOS TIEMPOS

Con un diseño adecuado puede conseguirse que un motor Otto o diésel funcione a dos tiempos, con un tiempo de potencia cada dos fases en lugar de cada cuatro fases. La eficiencia de este tipo de motores es menor que la de los motores de cuatro tiempos, pero al necesitar sólo dos tiempos para realizar un ciclo completo, producen más potencia que un motor cuatro tiempos del mismo tamaño.

El principio general del motor de dos tiempos es la reducción de la duración de los periodos de absorción de combustible y de expulsión de gases a una parte mínima de uno de los tiempos, en lugar de que cada operación requiera un tiempo completo. El diseño más simple de motor de dos tiempos utiliza, en lugar de válvulas de cabezal, las válvulas deslizantes u orificios (que quedan expuestos al desplazarse el pistón hacia atrás). En los motores de dos tiempos la mezcla de combustible y aire entra en el cilindro a través del orificio de aspiración cuando el pistón está en la posición más alejada del cabezal del cilindro. La primera fase es la compresión, en la que se enciende la carga de mezcla cuando el pistón llega al final de la fase. A continuación, el pistón se desplaza hacia atrás en la fase de explosión, abriendo el orificio de expulsión y permitiendo que los gases salgan de la cámara.

2 tiempos


Características y diferencias entre los dos y los cuatro tiempos

El motor de dos tiempos se diferencia en su construcción, del motor de cuatro tiempos Otto en las siguientes características:

* Ambas caras del pistón realizan una función simultáneamente, a diferencia del motor de cuatro tiempos en el que únicamente esta activa la cara superior.
* La entrada y salida de gases al motor se realiza a través de las lumbreras (orificios situados en el cilindro). Este motor carece de las válvulas que abren y cierran el paso de los gases en los motores de cuatro tiempos. El pistón dependiendo de la posición que ocupa en el cilindro en cada momento abre o cierra el paso de gases a través de las lumbreras.
* El cárter del cigüeñal debe estar sellado y cumple la función de cámara de precompresión. En el motor de cuatro tiempos, por el contrario, el cárter sirve de depósito de lubricante.
* La lubricación, que en el motor de cuatro tiempos se efectúa mediante el cárter, en el motor de dos tiempos se consigue mezclando aceite con el combustible en una proporción que varía entre el 2 y el 5 por ciento. Dado que esta mezcla está en contacto con todas las partes móviles del motor se consigue la adecuada lubricación.

Funcionamiento

4 Tiempos


Fase de admisión-compresión

El pistón se desplaza hacia arriba (la culata) desde su punto muerto inferior, en su recorrido deja abierta la lumbrera de admisión. Mientras la cara superior del pistón realiza la compresión en el cilindro, la cara inferior succiona la mezcla de aire y combustible a través de la lumbrera. Para que esta operación sea posible el cárter tiene que estar sellado. Es posible que el pistón se deteriore y la culata se mantenga estable en los procesos de combustión.
Fase de explosión-escape

Fase de explosión-escape

Al llegar el pistón a su punto muerto superior se finaliza la compresión y se provoca la combustión de la mezcla gracias a una chispa eléctrica producida por la bujía. La expansión de los gases de combustión impulsan con fuerza el pistón que transmite su movimiento al cigüeñal a través de la biela.

En su recorrido descendente el pistón abre la lumbrera de escape para que puedan salir los gases de combustión y la lumbrera de transferencia por la que la mezcla de aire-combustible pasa del cárter al cilindro. Cuando el pistón alcanza el punto inferior empieza a ascender de nuevo, se cierra la lumbrera de transferencia y comienza un nuevo ciclo.

Ventajas de los motores de dos tiempos

El motor de dos tiempos no precisa válvulas ni de los mecanismos que las gobiernan, por tanto es más liviano y de construcción más sencilla, por lo que resulta más económico.
Al producirse una explosión por cada vuelta del cigüeñal, frente a una cada dos vueltas de cigüeñal en el motor de cuatro tiempos, desarrolla más potencia para una misma cilindrada y su marcha es más regular.
Pueden operar en cualquier orientación ya que el cárter no almacena lubricante.

Inconvenientes de los motrores de dos tiempos

Este motor consume aceite, ya que la lubricación se consigue incluyendo una parte de aceite en el combustible. Este aceite penetra con la mezcla en la cámara de combustión y se quema pudiendo producir emisiones contaminantes y suciedad dentro del cilindro que en el caso de afectar a la bujía impide el correcto funcionamiento.
Su rendimiento es inferior ya que la compresión, en la fase de compresión-admisión, no es enteramente efectiva hasta que el pistón mismo cierra las lumbreras de transferencia y de escape durante su recorrido ascendente y es por esto, que en las especificaciones de los motores de dos tiempos aparecen muchas veces dos tipos de compresión, la compresión relativa ( relación entre los volúmenes del cilindro y de la cámara de combustión) y la compresión corregida, midiendo el cilindro solo desde el cierre de las lumbreras. Esta pérdida de compresión también provoca una pérdida de potencia.
Además, durante la fase de potencia-escape, parte del volumen de mezcla sin quemar (mezcla limpia), se pierde por la lumbrera de escape junto a los gases resultantes de la combustión provocando no solo una pérdida de rendimiento, sino más emisiones contaminantes.

Lubricación

El aceite, mezclado con la gasolina, es desprendido en el proceso de quemado del combustible. Debido a las velocidades de la mezcla, el aceite se va depositando en las paredes del cilindro, pistón y demás componentes. Este efecto es incrementado por las altas temperaturas de las piezas a lubricar. Un exceso de aceite en la mezcla implica la posibilidad de que se genere carbonilla en la cámara de explosión, y la escasez el riesgo de que se gripe el motor. Estos aceites suelen ser del tipo SAE 30, al que se le añaden aditivos como inhibidores de corrosión y otros. La mezcla de aceite y gasolina es ideal hacerla en un recipiente aparte, y una vez mezclados, verterlos al deposito.



Motor de 4 Tiempos / 2 Tiempos


motor


partes

6 comentarios - Motor de 4 Tiempos / 2 Tiempos

@vwsantiagol -1
Los motores diésel grandes de 2T suelen ser motores lentos con velocidades de cigüeñal de 100 a 750 revoluciones por minuto (rpm o r/min), mientras que los motores de 4T trabajan hasta 2.500 rpm (camiones y autobuses) y 5.000 rpm. (automóviles)


motor diesel 2T??? no existe
@zgonzaz
Esta muy bueno, muy completo!
@Los600 +1
Muy bueno mañana te dejo 10 porque ya los gaste ...
@trstanh
Kapo, me combiene comprar una moto de 2 tiempos o de 4?
Graxias muy buen post
@peke_23 +1
un 2 tiempos