Te damos la bienvenida a la comunidad de T!Estás a un paso de acceder al mejor contenido, creado por personas como vos.

O iniciá sesión con
¿No tenés una cuenta?
Universos paralelos

Los universos paralelos son una concepción mental, en la que entran en juego la existencia de varios universos o realidades más o menos independientes. El desarrollo de la física cuántica, y la búsqueda de una teoría unificada (teoría cuántica de la gravedad), conjuntamente con el desarrollo de la teoría de cuerdas, han hecho entrever la posibilidad de la existencia de múltiples dimensiones y universos paralelos.


Teoría de los universos múltiples de Everett

Una de las versiones científicas más curiosas que recurren a los universos paralelos es la interpertación de los universos múltiples de [1]Hugh Everett (IMM). Dicha teoría aparece dentro de la mecánica cuántica como una posible solución al problema de la medida en mecánica cuántica. Everett describió su interpretación más bien como una metateoría. Desde un punto de vista lógico la construcción de Everett evade muchos de los problemas asociados a otras interpretaciones más convencionales de la mecánica cuántica, sin embargo, en el estado actual de conocimiento no hay una base empírica sólida a favor de esta interpretación.

El problema de la medida, es uno de los principales "frentes filosóficos" que abre la mecánica cuántica. Si bien la mecánica cuántica ha sido la teoría física más precisa hasta el momento, permitiendo hacer cálculos teóricos relacionados con procesos naturales que dan 20 decimales correctos y ha proporcionado una gran cantidad de aplicaciones prácticas (centrales nucleares, relojes de altísima precisión, ordenadores), existen ciertos puntos difíciles en la interpretación de algunos de sus resultados y fundamentos (el premio Nobel Richard Feynman llegó a bromear diciendo "creo que nadie entiende verdaderamente la mecánica cuántica").

El problema de la medida se puede describir informalmente del siguiente modo:

1. De acuerdo con la mecánica cuántica un sistema físico, ya sea un conjunto de electrones orbitando en un átomo o un conjunto de políticos decidiendo la siguiente guerra planetaria, queda descrito por una función de onda. Dicha función de onda es un objeto matemático que supuestamente describe la máxima información posible que contiene un estado puro.

2. Si nadie externo al sistema ni dentro de él observara o tratara de ver como está el sistema, la mecánica cuántica nos diría que el estado del sistema evoluciona deterministamente. Es decir, se podría predecir perfectamente hacia donde irá el sistema.

3. La función de onda nos informa de cuales son los resultados posibles de una medida y sus probabilidades relativas, pero no nos dice qué resultado concreto se obtendrá cuando un observador trate efectivamente de medir el sistema o averiguar algo sobre él. De hecho, la medida sobre un sistema es un valor aleatorio de entre los posibles resultados.

Eso plantea un problema serio: si las personas y los científicos u observadores son también objetos físicos como cualquier otro, debería haber alguna forma determinista de predecir como tras juntar el sistema en estudio con el aparato de medida, finalmente llegamos a un resultado determinista. Pero el postulado de que una medición destruye la "coherencia" de un estado inobservado e inevitablemente tras la medida se queda en un estado mezcla aleatorio, parece que solo nos deja tres salidas:

(A) O bien renunciamos a entender el proceso de decoherencia, por lo cual un sistema pasa de tener un estado puro que evoluciona deterministamente a tener un estado mezcla o "incoherente"

(B) O bien admitimos que existen unos objetos no-físicos llamados "conciencia" que no están sujetos a las leyes de la mecánica cuántica y que nos resuelven el problema.

(C) O tratamos de inventar cualquier hipótesis exótica que nos haga compatibilizar como por un lado deberíamos estar observando tras una medida un estado no fijado por el estado inicial y por otro lado que el estado del universo en su conjunto evoluciona de forma determinista.

Diferentes físicos han tomado diferentes soluciones a este “trilema”:

1. Niels Bohr, que propuso un modelo inicial de átomo que acabó dando lugar a mecánica cuántica y fue considerado durante mucho tiempo uno de los defensores de la interpretación ortodoxa de Copenhague, se inclinaría por (A).

2. John Von Neumann, el matemático que creó el formalismo matemático de la mecánica cuántica y que aportó grandes ideas a la teoría cuántica, se inclinaba por (B).

3. La interpretación de Hugh Everett es uno de los planteamientos que apuesta de tipo (C).

La propuesta de Everett es que cada medida "desdobla" nuestro universo en una serie de posibilidades (o tal vez existían ya los universos paralelos mutuamente inobservables y en cada uno de ellos se da una realización diferente de los posibles resultados de la medida). La idea y el formalismo de Everett es perfectamente lógico y coherente, aunque algunos puntos sobre como interpretar ciertos aspectos, en particular como se logra la inobservabilidad o coordinación entre sí de esos universos para que en cada uno suceda algo ligeramente diferente. Pero por lo demás es una explicación lógicamente coherente y posible, que inicialmente no despertó mucho entusiasmo sencillamente porque no está claro que sea una posibilidad falsable.

Sin embargo, en una encuesta reciente sobre la IMM, llevada a cabo por el investigador de ciencias políticas L. David Raub, que entrevistó a setenta y dos destacados especialistas en cosmología y teóricos cuánticos, se planteaba en una de sus preguntas estas alternativas:

1. Sí, creo que la IMM es correcta
2. No acepto la IMM
3. Quizás la IMM sea correcta, pero aún no estoy convencido
4. No tengo una opinión ni a favor ni en contra.

Los resultados de la encuesta fueron: (1) 58%, (2) 18%, (3) 13%, (4) 11%. Entre los especialistas que se inclinaron por (1) estaban, Stephen Hawking, Richard Feynman o Murray Gell-Mann, entre los que se decantaron por (2) estaba Roger Penrose. Aunque Hawking y Gell-Mann han explicado su posición. Hawking afirma en una carta a Raub que «El nombre 'Mundos Múltiples' es inadecuado, pero la teoría, en esencia, es correcta» (tanto Hawking como Gell-Mann llaman a la IMM, 'Interpetación de Historias Múltiples'). Posteriormente Hawking ha llegado a decir que «La IMM es trivialmente verdadera» en cierto sentido. Por otro lado Gell-Man en una reseña de un artículo del físico norteamericano Bruce DeWitt, uno de los principales defensores de la IMM, Murray Gell-Mann se mostró básicamente de acuerdo con Hawking: «... aparte del empleo desacertado del lenguaje, los desarrollos físicos de Everett son correctos, aunque algo incompletos». Otros físicos destacados como Steven Weinberg o John A. Wheeler se inclinan por la corrección de esta interpretación. Sin embargo, el apoyo de importantes físicos a la IMM refleja sólo la dirección que está tomando la investigación y las perspectivas actuales, pero en sí mismo no constituye ningún argumento científico adicional en favor de la teoría.

Agujeros blancos y Universo de Reissner-Nordström


Se ha apuntado que algunas soluciones exactas de las ecuación del campo de Einstein pueden extenderse por continuación analítica más allá de las singularidades dando lugar universos espejos del nuestro. Así la solución de Schwarzschild para un universo con simetría esférica en el que la estrella central ha colapsado comprimiéndose por debajo de su radio de Schwarzschild podría ser continuada analíticamente a una solución de agujero blanco (un agujero blanco de Schwarzchild se comporta como la reversión temporal de un agujero negro de Schwarzschild).

Una posibilidad igualmente interesante es la solución de Agujero negro de Reissner-Nordstrom que puede ser continuada analíticamente a través de una singularidad espacial evitable por un viajero. La solución completa describe dos universos asintóticamente planos unidos por una zona de agujero negro.

Universos paralelos en la ficción

Universos paralelos a partir de viajes en el tiempo

En lo que se refiere a la literatura de Ciencia Ficción, los universos paralelos aparecen a veces en relación a los viajes en el tiempo. Así ciertos libros y películas, plantean que al viajar en el tiempo a un punto del pasado y volver luego al presente se llega no al universo original, sino más bien a un universo paralelo muy similar al del presente pero no del todo igual.

Esta situación es una posible solución para salvar el principio de causalidad y sin que aparezca la paradoja del viaje en el tiempo. Este tipo de paradoja es el tipo de situación que se presentaría, si un viajero en el tiempo pudiera ir al pasado, y asesinara a su abuelo, este viajero no nacería y al no nacer, no sería posible que este sujeto haya viajado en el tiempo. Sin embargo, en una realidad alterna o universo paralelo, el viajero podría interactuar con su "abuelo" e incluso hacerle desaparecer, y el viajero seguiría existiendo, ya que cambió una realidad distinta a la suya, de la cual partió originalmente. Una consecuencia de estos viajes sería que para el individuo viajante no sería posible volver a la realidad de la que partió inicialmente.

[1]Hugh Everett III (11 de noviembre, 1930 – 19 de julio, 1982) fue un físico Norte Americano que propuso por primera vez la teoría de los universos paralelos en la física cuántica. Dejó la física después de acabar su doctorado, desalentado por la falta de respuestas hacia su teoría por parte de los demás físicos. Desarrolló el uso de generalizado de los multiplicadores de Lagrange en investigación operativa y los aplicó comercialmente como consultor y analista, convirtiéndose en multimillonario.


La NASA admite la posibilidad de que existan universos múltiples

Para tal fin creó una ilustración realizada por ordenador donde se muestran universos independientes como círculos o esferas.
Las esferas pueden causalmente desconectarse de las otras, significando que ninguna comunicación puede pasar entre ellas.
Algunas esferas pueden contener diferentes versiones de nuestro universo, mientras que otras pueden tener diferentes leyes físicas.

Un sistema entero de universos paralelos se llama multiversos.

Un ojo humano colocado en la imagen computarizada de acuerdo a la NASA puede representar la posibilidad de que las versiones de algunas hipótesis de multiversos puedan existir solamente en la mente humana.
Una crítica a la hipótesis de los multiversos es que son con frecuencia difíciles de probar.
Algunas hipótesis de multiversos pueden, por lo tanto, ser divertidas de imaginar pero prácticamente infalsificables y por lo tanto no tener ningún valor científico predictivo.
El concepto de los multiversos surgió en la década de los sesentas, de la obra de escritores de ciencia ficción como Michael Moorcock, que utilizó términos como universos o mundos paralelos.
En la actualidad uno de los más celebres promotores de la hipótesis multiverso es el cosmólogo estadounidense Max Tegmark, quien deduce la existencia de otros universos como una implicación directa de observaciones cosmológicas.

Multiversos

En el 2003 publicó su teoría en la revista Scientific American, en un articulo titulado "Universos paralelos". En éste detalla los cuatro niveles de multiversos que podrían existir:

* Nivel I o multiverso abierto; en un universo infinito hay tantos universos paralelos como burbujas de cierto diámetro que se puedan construir. Como el volumen de cada una de esas burbujas es finito, es evidente que cada cierto tiempo se deben ir repitiendo todas las posibles combinaciones. Es decir, no sólo existen universos paralelos sino que también hay infinitos universos idénticos a éste. Tendríamos un multiverso.

* Nivel II o de burbuja; estos universos se encontrarían separados entre sí por un espacio vacío que se extendería más rápido de lo que sería posible viajar en él. Tendrían además condiciones iniciales diferentes y también valores diferentes de constantes fundamentales. Ayudarían a explicar por qué las condiciones de nuestro universo están tan bien ajustadas a la vida.

* Nivel III o de la interpretación de algunos mundos; en estos universos cada vez que se debe de tomar una decisión cuántica es como si ese universo se desdoblase en tantos como fuesen necesarios para dar cuenta de todos los posibles resultados.

* Nivel IV o de la última teoría ensamblada; universos con otras estructuras matemáticas con diferencias fundamentales en sus leyes físicas.

De acuerdo con los niveles anteriores ya no podría existir un nivel V.
Para Tegmark, la hipótesis de los multiversos podría ser verificable con más observaciones sobre las predicciones que se derivan de ella.

Fuente:

http://es.wikipedia.org/wiki/Universos_paralelos

http://es.wikipedia.org/wiki/Hugh_Everett

http://www.laflecha.net/canales/ciencia/noticias/200603244?page=1