Se necesitan 16.000 computadoras para identificar un gato


Se necesitan 16.000 computadoras para identificar un gato


Científicos de Google crearon una red de computadoras que simula el funcionamiento de las neuronas; aprendió a identificar gatos en fotografías sin ayuda externa.

MOUNTAIN VIEW, California - Dentro del laboratorio secreto X de Google , conocido por haberse inventado allí autos que se conducen solos y anteojos de realidad aumentada , un pequeño grupo de investigadores comenzó a trabajar hace varios años en una simulación del cerebro humano. Los científicos de Google crearon una de las mayores redes neurales para el aprendizaje, conectando 16.000 procesadores de computadora a Internet para que aprendieran por su cuenta.

¿Qué hizo el cerebro de Google al encontrarse con 10 millones de imágenes digitales en videos de YouTube? Hizo lo que millones de humanos hacen con YouTube: buscar gatos . La red neural se enseñó a sí misma a reconocer gatos, lo que en realidad no es algo frívolo. Esta semana los investigadores presentarán los resultados de su trabajo en una conferencia en Edimburgo, Escocia. Los científicos y programadores de Google dirán que si bien no es nada novedoso que Internet esté llena de videos de gatos, la simulación de todos modos los sorprendió: resultó mucho más efectiva que cualquier intento anterior, al aumentar al doble su precisión en el reconocimiento de objetos dentro de una lista de ítems diferentes.


Google



La investigación es representativa de una nueva generación de ciencia computacional que explota la caída en el costo de la computación y la disponibilidad de inmensos conjuntos de computadoras en centros de datos gigantes. Esto está llevando a avances significativos en áreas tan diversas como visión y percepción, reconocimiento de voz y traducción con computadoras.

Si bien algunas de las ideas de ciencia computacional que los investigadores están usando no son nuevas, la mera escala de las simulaciones de software está llevando a la creación de sistemas de aprendizaje que no eran posibles previamente. Y los investigadores de Google no están interesados solo en la explotación de las técnicas, a las que se conoce como modelos de "aprendizaje profundo". El año pasado científicos de Microsoft presentaron investigaciones que muestran que esas técnicas podrían aplicarse igualmente a la creación de sistemas computacionales que entiendan el habla humana.

"Esto es lo más caliente en materia de reconocimiento del habla en estos tiempos", dijo Yann LeCun, un científico computacional especializado en aprendizaje de máquinas en el Courant Institute of Mathematical Sciences en la Universidad de New York.

Y por supuesto que están los gatos.

Para encontrarlos, el equipo de Google, encabezado por el científico computacional Andrew Y. Ng de la Universidad de Stanford, y Jeff Dean, asociado de Google, usaron un conjunto de 16.000 procesadores para crear una red neural con más de mil millones de conexiones. La alimentaron con imágenes extraídas de 10 millones de videos de YouTube.


FUENTE: GOOGLE NOTICIAS