1) La leyenda del Ajedrez:

Una antiquísima leyenda cuenta que Sheram, príncipe de la india, quedó tan maravillado cuando conoció el juego del ajedrez, que quiso recompensar generosamente a Sessa, el inventor de aquel entretenimiento. Le dijo: "Pídeme lo que quieras". Sessa le respondió: "Soberano, manda que me entreguen un grano de trigo por la primera casilla del tablero, dos por la segunda, cuatro por la tercera, ocho por la cuarta, y así sucesivamente hasta la casilla 64".

El príncipe no pudo complacerle, porque el resultado de esa operación S = 1 + 2 + 4 + ... + 263 es aproximadamente 18 trillones de granos. Para obtenerlos habría que sembrar la Tierra entera 65 veces.

Pulula por los círculos matemáticos un sorprendente final de la historia. Sheram, preocupado al haber empeñado su palabra, mandó llamar al matemático del reino, un tal Pepe Martínez Aroza, el cual razonó de la siguiente manera:

"Alteza, puesto que no tenéis trigo suficiente para pagar la deuda contraida con Sessa, igual os daría deberle aún más. Sed, pues, magnánimo y aumentad vuestra recompensa a la cantidad S = 1 + 2 + 4 + 8 + ... hasta el infinito. Observad que, a partir de la segunda casilla, todas las cantidades a sumar son pares, lo cual nos permite escribir S = 1 + 2 × ( 1 + 2 + 4 + 8 + ... ), o lo que es lo mismo, S = 1 + 2 × S. Ahora, vos mismo podéis resolver esta sencilla ecuación de primer grado y, veréis que la única solución es S = -1. Podéis decir a Sessa que no solamente puede considerarse pagado con creces, ya que habéis aumentado enormemente vuestra recompensa, sino que actualmente os adeuda un grano de trigo."


La razon aurea o la perfecta proporcion:

Pitágoras y sus seguidores formaban una una especie de escuela o comunidad. Para ellos, el número cinco tenía un atractivo especial: su símbolo era una estrella de cinco puntas y les interesaba especialmente la figura del pentágono. En el pentágono hallaron el número , llamado número áureo (de oro). Es un número irracional que refleja la relación entre el lado de un pentágono y su diagonal. Su valor es , o aproximadamente 1,6180339887.... Las llamadas proporciones áureas, 1: han sido consideradas perfectas por los artistas desde la Antigua Grecia hasta nuestros días. Un rectángulo con las proporciones perfectas tiene la particularidad de que si se quita un cuadrado de 1×1, la parte restante vuelve a tener las proporciones perfectas. Los constructores del Partenón de Atenas (y los de muchos otros templos y edificios) tuvieron muy en cuenta la proporción áurea. La relación entre la altura y la anchura de su fachada es precisamente . Y lo mismo sucede con muchos objetos cotidianos: tarjetas de crédito, carnés de identidad, las cajas de los casetes...


Calculo Ultrarapido:

La capacidad para efectuar rápidamente operaciones aritméticas mentales parece tener sólo una moderada correlación con la inteligencia general y menor aún con la intuición y creatividad matemáticas. Algunos de los matemáticos más sobresalientes han tenido dificultades al operar, y muchos «calculistas ultrarrápidos» profesionales (aunque no los mejores) han sido torpes en todas las demás capacidades mentales. Sin embargo, algunos grandes matemáticos han sido también diestros calculistas mentales. Carl Friedrich Gauss por ejemplo, podía llevar a cabo prodigiosas hazañas matemáticas en la mente. Le gustaba hacer alarde de que aprendió antes a calcular que a hablar. Se cuenta que en cierta ocasión su padre, de oficio albañil, estaba confeccionando la nómina general de sus empleados, cuando Friedrich, que entonces tenía 3 años, le interrumpió diciéndole: «Papá, la cuenta está mal...». Al volver a sumar la larga lista de números se comprobó que la suma correcta era la indicada por el niño. Nadie le había enseñado nada de aritmética. John von Neumann era un genio matemático que también estuvo dotado de este poder peculiar de computar sin usar lápiz ni papel. Robert Jungk habla en su libro Brighter than a Thousand Suns acerca de una reunión celebrada en Los Álamos, durante la Segunda Guerra Mundial, en la que von Neumann, Enrico Fermi, Edward Teller y Richard Feynman lanzaban continuamente ideas. Siempre que había que efectuar un cálculo matemático, Fermi, Feynman y von Neumann se ponían en acción. Fermi empleaba una regla de cálculo, Feynman una calculadora de mesa, y von Neumann su cabeza. «La cabeza», escribe Jungk (citando a otro físico), «terminaba normalmente la primera, y es notable lo próximas que estaban siempre las tres soluciones».



La capacidad para el cálculo mental de Gauss, von Neumann y otros leones matemáticos como Leonhard Euler y John Wallis puede parecer milagrosa; palidece, sin embargo, ante las hazañas de los calculistas profesionales, una curiosa raza de acróbatas mentales que floreció a lo largo del siglo XIX en Inglaterra, Europa y América. Muchos comenzaron su carrera de niños. Aunque algunos escribieron acerca de sus métodos y fueron examinados por psicólogos, probablemente ocultaron la mayoría de sus secretos, o quizás ni ellos mismos entendían del todo como hacían lo que hacían. Zerah Colburn, nacido en Cabot, Vt., en 1804, fue el primero de los calculistas profesionales. Tenía seis dedos en cada mano y en cada pie, al igual que su padre, su bisabuela y al menos uno de sus hermanos. (Se le amputaron los dedos de sobra cuando tenía alrededor de 10 años. Nos preguntamos si acaso fue eso lo que le alentó en sus primeros esfuerzos por contar y calcular.) El niño aprendió la tabla de multiplicar hasta el 100 antes de que pudiese leer o escribir. Su padre, un pobre granjero, se dio cuenta rápidamente de sus posibilidades comerciales, y cuando el rapaz tenía solamente seis años le llevó de gira por primera vez. Sus actuaciones en Inglaterra, cuando tenía ocho años, están bien documentadas. Podía multiplicar cualesquiera números de cuatro dígitos casi instantáneamente, pero dudaba un momento ante los de cinco. Cuando se le pedía multiplicar 21.734 por 543. decía inmediatamente 11.801.562. Al preguntarle cómo lo había hecho, explicó que 543 es igual a 181 veces 3. Y como era más fácil multiplicar por 181 que por 543, había multiplicado primero 21.734 por 3 y luego el resultado por 181. Washington Irving y otros admiradores del niño recaudaron dinero suficiente para enviarlo a la escuela, primero en París y luego en Londres. No se sabe si sus poderes de cálculo decrecieron con la edad o si perdió el interés por actuar. Lo cierto es que volvió a América cuando tenía 20 años, ejerciendo luego otros diez como misionero metodista. En 1833 publicó en Springfield, Mass., su pintoresca autobiografía titulada A Memoir of Zerah Colburn: written by himself. . . with his peculiar methods of calculation. En el momento de su muerte, a los 35 años, enseñaba lenguas extranjeras en la Universidad de Norwich en Northfield, Vt.



Paralelamente a la carrera profesional de Colburn se desarrolla en Inglaterra la de George Parker Bidder, nacido en 1806 en Devonshire. Se dice que adquirió la destreza en el cálculo aritmético jugando con piedrecitas y botones, porque su padre, un picapedrero, sólo le enseñó a contar. Tenía nueve años cuando se fue de gira con su progenitor. Entre las preguntas que le planteaban los espectadores puede elegirse la que sigue: si la Luna dista 123.256 millas de la Tierra y el sonido viaja a cuatro millas por minuto ¿cuánto tiempo tarda éste en hacer el viaje de la Tierra a la Luna (suponiendo que pudiese)? En menos de un minuto el niño respondía: 21 días, 9 horas y 34 minutos. Cuando se le preguntó (a los 10 años) por la raíz cuadrada de 119.550.669.121, contestó 345.761 en 30 segundos. En 1818, cuando Bidder tenía 12 años y Colburn 14, coincidieron en Derbyshire, donde hubo un cotejo. Colburn da a entender en sus memorias que ganó el concurso, pero los periódicos de Londres concedieron la palma a su oponente. Los profesores de la Universidad de Edimburgo persuadieron al viejo Bidder para que les confiase la educación de su hijo. El joven se desenvolvió bien en la universidad y finalmente llegó a ser uno de los mejores ingenieros de Inglaterra. Los poderes de cálculo de Bidder no decrecieron con la edad. Poco antes de su muerte, acaecida en 1878, alguien citó delante de él que hay 36.918 ondas de luz roja por pulgada. Suponiendo que la velocidad de la luz es de 190.000 millas por segundo, ¿cuántas ondas de luz roja, se preguntaba, llegarán al ojo en un segundo? «No hace falta que lo calcules», dijo Bidder. «El número de vibraciones es 444.433 .651.200.000».



Tal vez haya sido Alexander Craig Aitken el mejor de los calculistas mentales recientes. Profesor de matemáticas de la Universidad de Edimburgo, nació en Nueva Zelanda en 1895 y fue coautor de un libro de texto clásico, The Theory of Canonical Matrices, en 1932. A diferencia de otros calculistas ultrarrápidos, no comenzó a calcular mentalmente hasta la edad de 13 años, siendo el álgebra, no la aritmética, lo que despertó su interés. En 1954, casi 100 años después de la histórica conferencia de Bidder, Aitken pronunció otra en la Sociedad de Ingenieros de Londres sobre el tema «El arte de calcular mentalmente: con demostraciones». El texto fue publicado en las Transactions de la Sociedad (Diciembre, 1954), con el fin de conservar otro testimonio de primera mano de lo que ocurre dentro de la mente de un calculista mental rápido. Un prerrequisito esencial es la capacidad innata para memorizar números rápidamente. Todos los calculistas profesionales hacen demostraciones de memoria. Cuando Bidder tenía 10 años, pidió a alguien que le escribiera un número de cuarenta dígitos y que se lo leyera. Lo repitió de memoria inmediatamente. Al final de una representación, muchos calculistas eran capaces de repetir exactamente todos los números con los que habían operado. Hay trucos mnemotécnicos mediante los que los números pueden transformarse en palabras, que a su vez pueden memorizarse por otro método, pero tales técnicas son demasiado lentas para emplearlas en un escenario y no hay duda de que ningún maestro las empleaba. «Nunca he utilizado reglas mnemotécnicas», dijo Aitken, «y recelo profundamente de ellas. No hacen más que perturbar con asociaciones ajenas e irrelevantes una facultad que debe ser pura y límpida». Aitken mencionó en su conferencia haber leído recientemente que el calculista francés contemporáneo Maurice Dagbert había sido culpable de una aterradora pérdida de tiempo y energía» por haber memorizado pi (v.) hasta el decimal 707 (el cálculo había sido hecho por William Shanks en 1873). «Me divierte pensar», dijo Aitken, «que yo lo había hecho algunos años antes que Dagbert y sin encontrar ninguna dificultad. Sólo necesité colocar los digitos en filas de cincuenta, dividir cada una de ellos en grupos de cinco y luego leerlas a un ritmo particular. De no ser tan fácil habría sido una hazaña reprensiblemente inútil». Veinte años después, cuando los computadores modernos calcularon pi con miles de cifras decimales, Aitken se enteró de que el pobre Shanks se había equivocado en los 180 últimos dígitos. «De nuevo me entretuve», continuó Aitken «en aprender el valor correcto hasta el decimal 1000, y tampoco entonces tuve dificultad alguna, excepto que necesitaba 'reparar' la unión donde había ocurrido el error de Shanks. El secreto, a mi entender, es relajarse, la completa antítesis de la concentración tal como normalmente se entiende. El interés es necesario. Una secuencia de números aleatorios, sin significación aritmética o matemática, me repelería. Si fuera necesario memorizarlos, se podría hacer, pero a contrapelo». Aitken interrumpió su conferencia en este punto y recitó pi hasta el dígito 250, de un modo claramente rítmico. Alguien le pidió comenzar en el decimal 301. Cuando había citado cincuenta dígitos se le rogó que saltase al lugar 551 y dar 150 más. Lo hizo sin error, comprobándose los números en una tabla de pi


Fibonacci:

Leonardo de Pisa (1170-1241), más conocido por Fibonacci, que significa «hijo de Bonaccio», coetáneo de Ricardo Corazón de León, fue sin duda el más grande entre los matemáticos europeos de la Edad Media. Se aficionó a las matemáticas siendo un chiquillo, tras un curso de aritmética posicional hindú que su padre, Bonaccio, director de la oficina de aduanas en una factoría mercamtil italiana asentada en Bougie, Argelia, le hizo seguir. La más conocida de sus obras, Liber abaci (1202) (literalmente, Libro del ábaco) era en realidad un amplio tratado del sistema de numeración indoarábigo, en el que presenta los signos hindúes y el 0 (quod arabice zephirum appellatur), y el método de regula falsi para ecuaciones de primer grado, mas sus razonamientos no parecieron causar demasiada impresión a los mercaderes italianos de la época. Con el tiempo, su libro llegó a ser, empero, la obra de máxima influencia entre todas las que contribuyeron a introducir en Occidente la notación indo-arábiga. En De quadratis numeris (~1225), que se perdió, y apareció en 1853 en la Biblioteca Ambrosiana de Milán, cuando muchos pensaban que sus resultados estaban copiados de Diofanto, supera a éste y a los árabes y sólo es superado por Fermat (v.) en el siglo XVII.

No deja de ser irónico que Leonardo, cuyas aportaciones a la matemática fueron de tanta importancia, sea hoy conocido sobre todo a causa de un matemático francés del siglo pasado, Edouard Lucas, interesado por la teoría de números (y recopilador de una clásica obra de matemáticas recreativas, en cuatro volúmenes), quien encadenó el nombre de Fibonacci a una sucesión numérica que forma parte de un problema trivial del Liber abaci. La sucesión de Fibonacci (1,1,2,3,5,8,11,... cada término es la suma de los dos anteriores Fn=Fn-1+Fn-2) ha tenido intrigados a los matemáticos durante siglos, en parte a causa de su tendencia a presentarse en los lugares más inopinados, pero sobre todo, porque el más novel de los amateurs en teoría de números, aunque sus conocimientos no vayan mucho más allá de la aritmética elemental, puede aspirar a investigarla y descubrir curiosos teoremas inéditos, de los que parece haber variedad inagotable. El interés por estas sucesiones ha sido avivado por desarrollos recientes en programación de ordenadores, ya que al parecer tiene aplicación en clasificación de datos, recuperación de informaciones, generación de números aleatorios, e incluso en métodos rápidos de cálculo aproximado de valores máximos o mínimos de funciones complicadas, en casos donde no se conoce la derivada. Seguramente la propiedad más notable de la sucesión de Fibonacci sea que la razón entre cada par de números consecutivos va oscilando por encima y debajo de la razón áurea, y que conforme se va avanzando en la sucesión, la diferencia con ésta va haciéndose cada vez menor; las razones de términos consecutivos tienen por límite, en el infinito, la razón áurea. La razón áurea es un famoso número irracional, de valor aproximado 1,61803..., que resulta de hallar la semisuma de 1 y la raíz cuadrada de 5. Hay abundante literatura (no siempre seria) dedicada a la aparición de la razón áurea y de la sucesión de Fibonacci tan relacionada con ella, en el crecimiento de los organismos y a sus aplicaciones a las artes plásticas, a la arquitectura e incluso a la poesía. George Eckel Duckworth, profesor de clásicas en la Universidad de Princeton, sostiene en su libro Structural Patterns and Proportions in Vergil's Aeneid (University of Michigan Press, 1962) que lo mismo Virgilio que otros poetas latinos de su época se sirvieron deliberadamente de la sucesión de Fibonacci en sus composiciones.



En el reino vegetal, la sucesión de Fibonacci hace su aparición más llamativa en la implantación espiral de las semillas en ciertas variedades de girasol. Hay en ellas dos haces de espirales logarítmicas, una de sentido horario, otra en sentido antihorario. Los números de espirales son distintos en cada familia, y por lo común, números de Fibonacci consecutivos. La lista de propiedades de la sucesión de Fibonacci bastaría para llenar un libro. Otro tanto puede decirse de sus aplicaciones en Física y Matemáticas. Leo Moser ha estudiado las trayectorias de rayos luminosos que inciden oblicuamente sobre dos láminas de vidrio planas y en contacto. Los rayos que no experimentan reflexión alguna atraviesan ambas láminas de sólo una forma; para los rayos que sufren una reflexión hay dos rutas posibles; cuando sufren dos reflexiones, las trayectorias son de tres tipos, y cuando sufren tres, de cinco. Al ir creciendo el número n de reflexiones, el número de trayectorias posibles va ajustándose a la sucesión de Fibonacci: para n reflexiones, el número de trayectorias es Fn+2. La sucesión puede utilizarse de forma parecida para contar el número de distintas rutas que puede seguir una abeja que va recorriendo las celdillas exagonales del panal; supondremos que la abeja se dirige siempre a una celdilla contigua y a la derecha de la que ocupa. Poco cuesta probar que hay sólo una ruta hasta la primera casilla, dos hasta la segunda, tres hasta la tercera, cinco itinerarios que conduzcan a la cuarta, y así sucesivamente. Al igual que antes, el número de trayectos es Fn+1, donde n es el número de casillas del problema. Y ya que viene a cuento, las abejas machos, o zánganos, no tienen padre. C. A. B. Smith ha hecho notar que cada zángano tiene madre, 2 abuelos (los padres de la madre), 3 bisabuelos (y no cuatro, pues el padre de la madre no tuvo padre), 5 tatarabuelos, y así sucesivamente, en sucesión de Fibonacci. David Klarner ha mostrado que los números de Fibonacci expresan de cuántas maneras podemos construir con dominós (rectángulos de tamaño 1 x 2) rectángulos de dimensión 2 x k. Hay sólo una manera de formar el rectángulo 2 x 1; 2 maneras de construir el cuadrado de 2 x 2; 3 para el rectángulo de 2 x 3; 5 para el de 2 x 4, y así sucesivamente.

El más notable de los problemas abiertos concernientes a sucesiones de Fibonacci es el de si contienen o no colecciones infinitas de números primos. En una sucesión de Fibonacci generalizada, si los primeros números son divisibles ambos por un mismo número primo, todos los términos posteriores lo serán también, y es evidente que tales sucesiones no podrán contener más de un número primo. Supongamos, pues, que los dos primeros números sean primos entre sí (esto es, que su único común divisor sea 1). ¿Podrán existir sucesiones generalizadas que no contengan absolutamente ningún número primo? El primero en resolver esta cuestión fue R. L. Graham en «A Fibonacci-like Sequence of Composite Numbers», en Mathematics Magazine, vol, 57, noviembre de 1964 pp. 322-24. Existe una infinidad de sucesiones así, pero la mínima (en el sentido de serlo sus dos primeros números) es la que empieza por 1786772701928802632268715130455793 y 1059683225053915111058165141686995

Eratostenes de Cirene:

(275-194 a.C.) Sabio griego nacido en la actual Libia, quien en el siglo III a.C. calculó por primera vez, que se sepa, el radio de la Tierra. Partiendo de la idea de que la Tierra tiene forma esférica y que el Sol se encuentra tan alejado de ella que se puede considerar que los rayos solares llegan a la Tierra paralelos, Eratóstenes el día del solsticio de verano (21 de junio), a las doce de la mañana, midió, en Alejandría, con ayuda de una varilla colocada sobre el suelo, el ángulo de inclinación del Sol, que resultó ser 7,2°; es decir, 360º/50. Al mismo tiempo sabía que en la ciudad de Siena (actual Assuán, en que se construyó recientemente la gran presa de Assuán sobre el curso del río Nilo), los rayos del sol llegaban perpendicularmente al observar que se podía ver el fondo de un pozo profundo. La distancia de Alejandría a Siena situada sobre el mismo meridiano era de 5000 estadios (1 estadio = 160 m). Entonces Eratóstenes pensó que dicha distancia sería igual a 1/50 de toda la circunferencia de la Tierra; por tanto, la circunferencia completa medía:


50 × 5.000 = 250.000 estadios = 250.000 × 160 m = 40.000 km

De donde el radio de la Tierra medía: R = 40.000 / 2Pi = 6.366,19 km.

Las actuales mediciones sobre el radio de la Tierra dan el valor de 6.378 km. Como se puede observar se trata de una extraordinaria exactitud, si se tienen en cuenta los escasos medios de que se disponía.

Hoy día, gracias a las mediciones efectudas por los satélites conocemos la Tierra palmo a palmo y podemos saber con precisión casi milimétrica cuál es su tamaño. Pero hace veintitrés siglos no era tan fácil.

Medir el radio de la Tierra no fue el único mérito de Eratóstenes. Como otros sabios de su época, no se conformó con una rama del saber: Fue astrónomo, geógrafo, historiador, literato... y matemático: a él se debe la "criba de Eratóstenes", un sistema para determinar números primos.

Todos esos conocimientos y su gran reputación hicieron que el Rey de Egipto le eligiera para dirigir la Biblioteca de Alejandría, en la que se guardaba todo el saber de su época.

A los ochenta años, ciego y cansado, se dejó morir por inanición


Fermat Pierre:

Pierre de Fermat (1601-1665), francés, fundador de la teoría de los números. No era matemático sino jurista, y sus trabajos matemáticos no se publicaron hasta después de su muerte. Escribió numerosas notas al margen de su ejemplar de la Aritmética de Diofanto. Una de ellas ha llegado a ser uno de los más famosos enunciados en la historia de las matemáticas, el Último teorema de Fermat. Al lado de un problema sobre ternas pitagóricos, escribió en latín: "Por otra parte, es imposible que un cubo sea suma de otros dos cubos, una cuarta potencia, suma de dos cuartas potencias, o en general, que ningún número que sea potencia mayor que la segunda pueda ser suma de dos potencias semejantes. He descubierto una demostración verdaderamente maravillosa de esta proposición que este margen es demasiado estrecho para contener." Un jurista provinciano del s. XVII ha burlado con su teorema a los más capaces matemáticos de tres siglos. Se sospecha que estaba equivocado y carecía de tal demostración. Cien años más tarde Euler(v.) publicó una demostración ¡errónea! Para n=3. En 1825, Dirichlet y Legendre lo hicieron para n=5, y en 1840 Gabriel Lamé lo hizo, no sin gran dificultad, para n=7. En 1847 Kummer logró establecerlo para todo n primo <100 salvo, quizá, para 37, 59 y 67. Mediante ordenador se demostró en 1970 para n hasta 30.000 y poco después hasta 125.000. En 1854 la Academia de Ciencias de París había hecho la promesa de otorgar una medalla y 300.000 francos de oro a quien lograra demostrar el teorema. Kummer recibió la medalla en 1858. La historia tiene su final con Willes (v.), quien ha logrado, no sin tropiezos, dejarlo definitivamente establecido


Gottingen:

En la Universidad de Göttingen hay un cofre que contiene un manuscrito en el que se expone la construcción, usando tan sólo regla y compás, de un polígono regular de 65.537 lados. Solamente pueden construirse polígonos regulares de número primo de lados por el procedimiento clásico cuando el número de lados sea un primo de un tipo especial que se conocen con el nombre de números primos de Fermat (v.): números primos que puedan expresarse en la forma: (2²)²+1. Tan solo se conocen cinco números primos de este tipo: 3, 5, 17, 257 y 65.537. En opinión de Coxeter, el pobre matemático que consiguió construir el 65.537-gono, debió invertir en ello unos diez años. Se ignora si existe un polígono con un número primo de lados mayor que el anterior que pueda ser construido a priori con regla y compás. Si tal polígono existe, su construcción efectiva está fuera de la cuestión, pues su número de lados sería astronómico


Numero Pi:

Le rodean muchos misterios, a pesar de ser una constante natural. Aparece en los lugares más inesperados: la probabilidad de que dos enteros positivos cualesquiera sean primos entre sí es 6/pi^2.



Augustus de Morgan escribió "... este misterioso 3.14159... que se cuela por todas las puertas y ventanas, que se desliza por cualquier chimenea". Bertrand Russell escribió un cuento corto titulado La pesadilla del matemático, en el que escribe "El rostro de (pi) estaba enmascarado; se sobreentendía que nadie podía contemplarlo y continuar con vida. Pero unos ojos de penetrante mirada acechaban tras la máscara, inexorables, fríos y enigmáticos...".



Las primeras civilizaciones indoeuropeas ya tenían conciencia de que el área del círculo es proporcional al cuadrado de su radio, y de que su circunferencia lo es al diámetro. Sin embargo no se sabe cuándo se comprendió por vez primera que ambas razones son la misma constante, simbolizada en nuestros días por la letra griega pi (El símbolo del que toma nombre la constante lo introdujo en 1706 el escritor y matemático inglés William Jones y lo popularizó el matemático suizo Leonhard Euler (v.) en el siglo XVIII.) Arquímedes de Siracusa (v.), el mayor matemático de la antigüedad, estableció rigurosamente la equivalencia de ambas razones en su tratado Medición de un circulo. Usando polígonos de 96 lados inscritos (idea de Antífono) y circunscritos (idea de Brisón de Heraclea) (¡y sin conocer las funciones trigonométricas!), llegó a que 310/71<pi<310/70 y dedujo un laborioso procedimiento para calcular (pi) con cualquier precisión.

En el s. V, el astrónomo chino Tsu Ch'ung-Chih descubrió que pi=355/113(aproximadamente)



Todos los intentos de calcular el número (pi) realizados en Europa hasta mediados del siglo XVII se fundaron de un modo u otro en el método de Arquímedes. Ludolph van Ceulen, matemático holandés del siglo XVI, dedicó gran parte de su carrera al cálculo de (pi). Casi al final de su vida obtuvo una aproximación de 32 cifras calculando el perímetro de polígonos inscritos y circunscritos de 262 (unos 1018) lados. Se dice que el valor de (pi) que obtuvo así, denominado número ludolfiano en ciertas regiones de Europa, fue su epitafio.

Los que investigando la cuadratura del círculo creyeron haber descubierto un valor exacto de (pi) forman legión; ninguno de ellos aventajó al filósofo inglés Thomas Hobbes en capacidad para combinar con un elevado pensamiento la más profunda ignorancia. En la época de Hobbes no se les enseñaban las matemáticas a los ingleses cultivados, y éste había ya cumplido los cuarenta cuando por vez primera ojeó los textos de Euclides. Al llegar al teorema de Pitágoras exclamó asombrado: «¡Por Dios! ¡Esto es imposible!», tras de lo cual retrocedió y rehizo paso a paso toda la demostración hasta quedar plenamente convencido. Durante el resto de su vida se entregó a la geometría con el ardor de un enamorado. «La geometría tiene algo que la asemeja al vino», escribiría posteriormente, y se dice que, a falta de superficies más adecuadas, solía dibujar figuras geométricas en la ropa de su cama. Si Hobbes se hubiera contentado con ser un matemático aficionado, un amateur, hubieran sido más tranquilos los años de su vejez; pero su monstruoso egotismo le indujo a creerse dotado para realizar grandes descubrimientos en matemáticas. En 1655, a los sesenta y siete años de edad, se lanzó a publicar un libro en latín titulado De corpore (Sobre los cuerpos), en el que figuraba un ingenioso método para cuadrar el círculo. En realidad, el método no era más que una excelente aproximación, pero Hobbes estaba convencido de su exactitud. John Wallis, un distinguido matemático y criptógrafo inglés escribió entonces un folleto poniendo en evidencia los errores de Hobbes, y de este modo comenzó uno de los más largos, divertidos y estériles duelos verbales que jamás hayan librado dos espíritus selectos. Durante casi un cuarto de siglo, ambos contendientes se dirigieron los más hábiles sarcasmos y las más aceradas invectivas. Wallis mantuvo la disputa, en parte por propia diversión, pero principalmente porque veía en ella un modo de ridiculizar a Hobbes, creando al mismo tiempo la duda acerca de sus opiniones políticas y religiosas, que Wallis detestaba. Hobbes respondió al primer ataque de Wallis haciendo reimprimir su libro en inglés e incluyendo un ultílogo titulado Six Lessons to the Professors of Mathematics... (Seis lecciones para profesores de matemáticas...) (Confío en que el lector sabrá disculpar que abrevie los interminables títulos de las obras del siglo XVII.) Wallis replicó con Due Correction for Mr. Hobbes in School Discipline for not saying his Lessons right (Castigo escolar impuesto al señor Hobbes por no dar debidamente sus lecciones). Hobbes contraatacó entonces con Marks of the Absurd Geometry, Rural Language, Scottish Church Politics, and Barbarisms of John Wallis (Notas sobre la geometría absurda, el lenguaje patán, la política de la Iglesia escocesa y otros barbarismos de John Wallis). Wallis devolvió el fuego con Hobbiani Puncto Dispunctio! or the Undoing of Mr. Hobbes' Points (Hobbiani Puncto Dispunctio! o La refutación de los puntos del Sr. Hobbes). Algunos panfletos más tarde (mientras tanto, Hobbes había publicado anónimamente en París un absurdo método de duplicación del cubo), Hobbes escribía: «O bien sólo yo estoy loco, o ellos (los profesores de matemáticas) han perdido por completo el juicio: no podemos, pues, aceptar una tercera opinión, a menos que aceptemos que todos estamos locos.» «La refutación está de más -fue la respuesta de Wallis-. Pues si él está loco, seguramente no atenderá a razones; por otra parte, si somos nosotros los locos, tampoco nos encontraremos en condiciones de intentar convencerle.» Con treguas momentáneas, la batalla prosiguió hasta la muerte de Hobbes, ocurrida a los noventa y un años. En uno de sus últimos ataques contra Wallis, Hobbes, que era efectivamente muy tímido en su relación con los demás, escribió: «El Sr. Hobbes jamás ha intentado provocar a nadie; pero quien le provoque descubrirá que su pluma es al menos tan hiriente como la suya. Todos vuestros escritos no son sino errores o sarcasmos; esto es, nauseabundos flatos, hedores de mulo viejo cinchado en exceso tras un hartazgo. Yo he cumplido. Os he tenido en consideración por esta vez, pero no lo repetiré...» . No es éste el lugar indicado para explicar con detalle lo que Wallis denominaba «la curiosa incapacidad del señor Hobbes para aprender lo que no sabe». En conjunto, Hobbes publicó alrededor de una docena de métodos diferentes para cuadrar el círculo. Una de las mayores dificultades que debió afrontar el filósofo fue su incapacidad para concebir que, considerados en abstracto, los puntos, las líneas y las superficies pudieran tener menos de tres dimensiones. En Quarrels of Authors (Autores en disputa), Isaac Disraeli escribe: «A pesar de todos los razonamientos de todos los geómetras que le rodeaban, parece ser que descendió a su tumba con la firme convicción de que las superficies tenían tanto extensión como profundidad.» Hobbes constituye un caso clásico de hombre de genio que se aventura en exceso por una rama de la Ciencia sin poseer la preparación necesaria, y que disipa sus prodigiosas facultades en vacuidades pseudocientíficas


Ramanujan:

Srinivasa Ramanujan (1887-1920), matemático hindú muy enigmático. De familia humilde, a los siete años asistió a una escuela pública gracias a una beca. Recitaba a sus compañeros de clase fórmulas matemáticas y cifras de pi (v.). A los 12 años dominaba la trigonometría, y a los 15 le prestaron un libro con 6000 teoremas conocidos, sin demostraciones. Ésa fue su formación matemática básica. En 1903 y 1907 suspendió los exámenes universitarios porque solo se dedicaba a sus "diversiones" matemáticas. En 1912 fue animado a comunicar sus resultados a tres distinguidos matemáticos. Dos de ellos no le respondieron, pero sí lo hizo G.H. Hardy, de Cambridge, tenido por el más eminente matemático británico de la época. Hardy estuvo a punto de tirar la carta, pero la misma noche que la recibió se sentó con su amigo John E. Littlewood (v.) a descifrar la lista de 120 fórmulas y teoremas de Ramanujan. Horas más tarde creían estar ante la obra de un genio. Hardy tenía su propia escala de valores para el genio matemático: 100 para Ramanujan, 80 para David Hilbert, 30 para Littlewood y 25 para sí mismo. Algunas de las fórmulas de Ramanujan le desbordaron, pero escribió "...forzoso es que fueran verdaderas, porque de no serlo, nadie habría tenido la imaginación necesaria para inventarlas". Invitado por Hardy, Ramanujan partió para Inglaterra en 1914 y comenzaron a trabajar juntos. En 1917 Ramanujan fue admitido en la Royal Society de Londres y en el Trinity College, siendo el primer indio que lograba tal honor. De salud muy débil, moría tres años después.

Lo principal de los trabajos de Ramanujan está en sus "Cuadernos", escritos por él en nomenclatura y notación particular, con ausencia de demostraciones, lo que ha provocado una hercúlea tarea de desciframiento y reconstrucción, aún no concluida. Fascinado por el número pi (v.), desarrolló potentes algoritmos para calcularlo. Uno de ellos, reelaborado por los hermanos Jonathan y Peter Borwein.