About Taringa!

Popular channels

Determinación de Proteínas - [Análisis y Propiedades]

He vuelto!!! Seguiré subiendo Posts sobre Ingeniería de Alimentos. Si quieren un tema en particular, pidanlo!!!



1. DETERMINACIÓN DE PROTEÍNAS 


Las proteínas son nutrientes muy importantes, ya que se utilizan como material de construcción y recambio de los compuestos propios del organismo. Están presentes en la carne, la leche, los huevos, las legumbres, etc. Químicamente son polímeros formados a partir de aminoácidos. El valor nutricional de un alimento depende tanto del contenido proteico total como del tipo de aminoácidos presentes.


  • Método de Kjeldahl

En el trabajo de rutina se determina mucho más frecuentemente la proteína total que las proteínas o aminoácidos individuales. En general, el procedimiento de referencia Kjeldahl determina la materia nitrogenada total, que incluye tanto las no proteínas como las proteínas verdaderas.
El método se basa en la determinación de la cantidad de Nitrógeno orgánico contenido en productos alimentarios, compromete dos pasos consecutivos:

a) La descomposición de la materia orgánica bajo calentamiento en presencia de ácido sulfúrico concentrado.
b) El registro de la cantidad de amoniaco obtenida de la muestra.
El método de Kjeldahl consta de las siguientes etapas:

a) Digestión:         Proteína + H2SO4 Q CO2 + (NH4)2SO4 + SO2
b) Destilación:       (NH4)2SO4 + 2NaOH Q Na2SO4 + NH3 X+ H2O   (recibiendo en HCl)
                                  NH3 + H3BO3 Q NH4H2BO3     (recibiendo en H3BO3) 
c) Titulación:          NH4Cl + HCl + NaOH Q NH4Cl + NaCl + H2O   (si se recibió en HCl) 
                                      NH4H2BO3 + HCl Q H3BO3 + NH4Cl      (si se recibió en H3BO3)

En la mezcla de digestión se incluye sulfato sódico para aumentar el punto de ebullición y un catalizador para acelerar la reacción, tal como sulfato de cobre. El amoniaco en el destilado se retiene o bien por un ácido normalizado y se valora por retroceso, o en ácido bórico y valora directamente. El método Kjeldahl no determina, sin embargo, todas las formas de nitrógeno a menos que se modifiquen adecuadamente; esto incluye nitratos y nitritos.

Para convertir el nitrógeno a proteína se emplea el factor de 6.25 el cual proviene de la consideración de que la mayoría de las proteínas tienen una cantidad aproximada de 16% de nitrógeno.  Para cada alimento, en particular, se puede obtener un factor de conversión según el contenido de Nitrógeno.



  • Absorción a 280nm.



La mayoría de las proteínas muestran una absorción a 280 nm., la cual se atribuye al grupo fenólico de la tirosina y al grupo indólico del triptofano. La cuantificación de proteínas basada en la absorción en la región de UV, tiene la ventaja de que no es necesario utilizar reactivos y la muestra no se daña o destruye durante la determinación. Se toma en cuenta la absorción del disolvente, ya que este puede absorber en la misma región. Este método sufre interferencias de compuestos que contengan anillos de purina y pirimida. Se realiza una comparación con una proteína estándar, de la que se debe conocer su composición.


  • Método de Biuret


El método comprende un ensayo colorimétrico de un paso donde se cuantifica la formación de un complejo estable entre proteínas y cobre (II). El complejo presenta un color violeta característico, que se puede observar a 310nm o 540-560nm, el cual se da por la coordinación de un átomo de cobre con cuatro átomos de nitrógeno. El complejo se basa en la desprotonación de los grupos amida para formar el enlace con el cobre (II) o por el establecimiento de un enlace coordinado entre el metal y los pares de electrones libres de los átomos de oxigeno y de nitrógeno del péptido.
Después de la adición del reactivo de cobre se requiere de tiempo para desarrollar una coloración de Biuret estable; es necesario considerar la posible influencia de aminoácidos libres que forman buffer en configuración tris y amoniaco.


  • Método de Lowry

El método de Lowry et al, 1951 combina la reacción de Biuret con la reducción del reactivo de Folin-Ciocalteu (ácidos fosfomolíbdico y fosfotúngstico) por la oxidación de tirosina, triptofano, cisteína, cistina de las cadenas polipeptídicas (Nielsen, 1988). El proceso de oxido-reducción se acompaña de la formación de un color azul característico. Los quelatos de cobre en la estructura del péptido facilitan la transferencia de electrones de los grupos funcionales amino al cromóforo ácido. Este método es útil para determinar pequeñas cantidades de proteína en una disolución. El desarrollo de color es dependiente en gran cantidad del pH, que se debe mantener entre 10 y 10.5.


  • Método turbidimétrico

La turbidez producida cuando una proteína se mezcla con alguno de los precipitantes comunes (ácido tricloroacético 3-10%, ácido sulfosalicílico y ferrocianuro de potasio en ácido acético) para proteínas en bajas concentraciones se puede utilizar como un índice
de la concentración de proteínas.
Las técnicas turbidimétricas son rápidas y convenientes, sin embargo las principales desventajas que presentan es que las proteínas difieren en la velocidad de precipitación así como no permiten diferenciar entre proteínas y compuestos insolubles en ácidos tales como ácidos nucleicos.


  • Unión de colorantes

Controlando el pH y la fuerza iónica del medio los grupos funcionales ácidos y básicos de las proteínas pueden interactuar con grupos orgánicos de carga opuesta. Al realizarse la unión se presenta coloración o bien un cambio de ésta. Comúnmente se usan colorantes sulfonados los cuales reaccionan a pH ácido con el grupo e-amino de la lisina y el grupo guanidina de la arginina, el imidazol de la histidina y un número limitado de a-amino terminales.


2. EXTRACCIÓN DE PROTEÍNAS (MÉTODO DE OSBORNE Y MENDEL)


El método se fundamenta en la relación estructura-solubilidad de las proteínas. Por ejemplo, se sabe que la zeína que es soluble en un alcohol fuerte o en disoluciones alcalinas diluidas, pero es insoluble en agua o en soluciones neutras inorgánicas. Las glutelinas por ejemplo es insoluble en agua, en soluciones salinas y en alcohol, y bastante soluble en sosa y potasa.
Es importante notar que la mayoría de nitrógeno proveniente de proteínas es soluble en alcohol y en disoluciones alcalinas. Las globulinas, albúminas y prolinas son solubles en disoluciones alcalinas diluidas.




3. PROPIEDADES FUNCIONALES DE LAS PROTEÍNAS


  • Capacidad de gelificación


Cuando las proteínas desnaturalizadas se agregan para formar una red proteica ordenada, al proceso se le denomina gelificación. 
La gelificación es una propiedad funcional muy importante de algunas proteínas, se utiliza, no sólo para formar geles sólidos viscoelásticos, sino también para mejorar la absorción de agua, los efectos espesantes, la fijación de partículas (adhesión) y pata estabilizar emulsiones y espumas.
Los mecanismos y las interacciones responsables de la formación de las redes tridimensionales proteicas son el despliegue y se desnaturaliza antes de la interacción y agregación ordenada proteína-proteína. La formación de las redes proteicas se considera el resultado de un balance entre las interacciones proteína-proteína y proteínadisolvente (agua) y entre las fuerzas atractivas y repulsivas entre cadenas polipeptídicas adyacentes. Entre las fuerzas atractivas implicadas se encuentran las interacciones hidrofóbicas (potenciadas por las temperaturas elevadas) electrostáticas (como los puentes de calcio (II) y otros cationes divalentes), los puentes de hidrógeno (potenciados por el enfriamiento) y los enlaces disulfuro.



  • Capacidad de emulsificación


La Capacidad de emulsificación es el volumen de aceite que puede ser emulsificado por cada gramo de proteína, antes de que se produzca la inversión de fases.
Las características de una emulsión y los resultados obtenidos en los dos tipos de ensayos mencionados se ven influidos por múltiples factores: tipo y geometría del equipo utilizado, intensidad del input de energía, velocidad de adición del aceite, volumen de la fase grasa, temperatura, pH, fuerza iónica, presencia de azúcares y agentes de superficie de bajo peso molecular, exposición al oxígeno, tipo de grasa,
concentración de las proteínas solubles.


  • Capacidad de espumado


Las espumas suelen ser dispersiones de burbujas de gas en una fase continua, líquida o semisólida, que contiene un agente con actividad de superficie, soluble. En muchos casos, el gas es aire (y en ocasiones dióxido de carbono) y la fase continua una disolución o suspensión acuosa de proteínas.
Se puede producir espuma batiendo o agitando una disolución proteica en presencia de abundante fase gaseosa.
La formación de espuma requiere la difusión de las proteínas solubles hacia la interfase aire/ agua, donde deben desplegarse, concentrarse y extenderse rápidamente, para rebajar la tensión interfasial. El desplegamiento previo de las proteínas globulares, a través de un calentamiento moderado, la exposición a agentes desnaturalizantes, como sustancias reductoras de los grupos disulfuro, o la proteolisis parcial, mejoran la orientación en la interfase y proporcionan a las proteínas una mayor capacidad de formación de espuma.
Para estabilizar una espuma es preciso formar una película proteica, impermeable al aire, gruesa, elástica, cohesiva y continua en torno a cada burbuja.
La capacidad de espumado se define como los mililitros de espuma por mililitro de líquido.


  • Capacidad de retención de agua

Se determina la cantidad de agua necesaria para lograr un estado de saturación de la proteína (cantidad máxima de agua retenida, medida por centrifugación). En este método se mide tanto el agua ligada (agua de hidratación, no congelable) como el agua capilar, retenida físicamente entre las moléculas proteicas.
La concentración proteica, el pH, la temperatura, el tiempo, la fuerza iónica y la presencia de otros componentes afectan a las fuerzas que toman parte en las interacciones proteína-proteína y proteína-agua.
La absorción total de agua aumenta con la concentración proteica.
Los cambios de pH, a través de su influencia sobre la ionización y la magnitud de la carga neta de la molécula proteica, alteran las fuerzas interactivas, atractivas o repulsivas, de la proteína y modifican su aptitud para asociarse con el agua.
La fijación de agua por las proteínas desciende generalmente a medida que se eleva la temperatura, debido a la disminución de los puentes de hidrógeno. El calentamiento provoca la desnaturalización y la agregación, pudiendo esta última reducir el área superficial y el número de grupos amino polares disponibles para fijar agua. Por otro lado, cuando se calientan proteínas con una estructura muy compacta, la disociación y el desplegamiento ocasionados pueden exponer enlaces peptídicos y cadenas laterales polares previamente ocultos, lo que aumenta la fijación.
El tipo y la concentración de iones ejercen un considerable efecto sobre la absorción de agua. Generalmente, se establece una competencia en la interacción entre el agua, la sal y las cadenas laterales de los aminoácidos.



0No comments yet
      GIF