Check the new version here

Popular channels

20 importantes teorias cientificas

Estas son las 20 teorías más importantes y significativas de la historia.

1. Einstein y la Teoría de la Relatividad



La teoría de la relatividad incluye dos teorías (la de la relatividad especial y la de la relatividad general) formuladas por Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y el electromagnetismo.

La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.

No fue sino hasta el 7 de marzo de 2010 cuando fueron mostrados públicamente los manuscritos originales de Einstein por parte de la Academia Israelí de Ciencias. El manuscrito tiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, había sido ofrecido por Einstein a la Universidad hebraica de Jerusalén en 1925, con motivo de su inauguración en Palestina, entonces bajo mandato británico.




2. Darwin y la Evolución



El ser un león o un gato o una rosa lleva consigo algo especial, algo que ningún otro animal o planta comparte con él. Cada uno de ellos es una especie única de vegetal o animal. Sólo los leones pueden parir cachorros de león, solamente los gatos pueden tener garitos, y únicamente de semillas de rosa pueden salir rosas.

Aun así, es posible que dos especies diferentes muestren semejanzas. Los leones se parecen mucho a los tigres, y los chacales a los coyotes, a pesar de que los leones sólo engendran leones y no tigres, y los chacales sólo paren chacales y no coyotes.

Y es que el reino entero de la vida puede organizarse convenientemente en grupos de criaturas semejantes. Cuando los científicos se percataron por primera vez de esto, muchos pensaron que no podía ser pura coincidencia. Dos especies parecidas ¿lo eran porque algunos miembros de una de ellas habían pasado a formar parte de la otra? ¿No sería que se parecían porque ambas estaban íntimamente relacionadas?

En 1831, un joven naturalista inglés llamado Charles Darwin se enroló en un barco fletado para explorar el mundo. Poco antes de zarpar había leído un libro de geología escrito por otro súbdito inglés, Charles Lyell, donde éste comentaba y explicaba las teorías de Hutton sobre la edad de la Tierra.

El viaje por costas remotas y las escalas en islas poco menos que inexploradas dieron a Darwin la oportunidad de estudiar especies aún desconocidas por los europeos. Especial interés despertó en él la vida animal de las Islas Galápagos, situadas en el Pacífico, a unos mil kilómetros de la costa de Ecuador.

Darwin observó catorce especies diferentes de pinzones en estas remotas islas. Todas ellas diferían ligeramente de las demás y también de los pinzones que vivían en la costa sudamericana. El pico de algunos de los pinzones estaba bien diseñado para comer pequeñas semillas; el de otros, para partir semillas grandes; una tercera especie estaba armada de un pico idóneo para comer insectos; y así sucesivamente.

Darwin intuyó que todos estos pinzones tenían su origen en un antepasado común. ¿Qué les había hecho cambiar? La idea que se le ocurrió era la siguiente: podía ser que algunos de ellos hubiesen nacido con ligeras modificaciones en el pico y que hubieran transmitido luego estas características innatas a la descendencia. Darwin, sin embargo, seguía albergando sus dudas, porque esos cambios accidentales ¿serían suficientes para explicar la evolución de diferentes especies?

En 1838 halló una posible solución en el libro titulado Un ensayo sobre el principio de población, publicado en 1798 por el clérigo inglés Thomas R. Malthus. Malthus mantenía allí que la población humana aumentaba siempre más deprisa que sus recursos alimenticios. Por consiguiente, el número de habitantes se vería reducido en último término por el hambre, si es que no por enfermedades o guerras.




3. Newton y la inercia



Aristóteles observó que aquí abajo, en la tierra, todo cambia o se desintegra: los hombres envejecen y mueren, los edificios se deterioran y derrumban, el mar se encrespa y luego se calma, los vientos llevan y traen las nubes, el fuego prende y luego se apaga, y la Tierra misma tiembla con los terremotos. En los cielos, por el contrario, parecían reinar sólo la serenidad y la inmutabilidad. El Sol salía y se ponía puntualmente y su luz jamás subía ni bajaba de brillo. La Luna desgranaba sus fases en orden regular, y las estrellas brillaban sin desmayo.

Aristóteles concluyó que las dos partes del universo funcionaban de acuerdo con reglas o «leyes naturales» de distinta especie. Había una ley natural para los objetos de la Tierra y otra para los objetos celestes.

Unos cuarenta años después de la muerte de Galileo (quien había desafiado a Aristóteles respecto a la velocidad en la caída de los cuerpos), el científico inglés Isaac Newton estudió la idea de que la resistencia del aire influía sobre los objetos en movimiento y logró descubrir otras formas de interferir con éste.

Estableció las leyes de la mecánica clásica, tanto en estática y dinámica, leyes que permitieron dirigir un cohete a la Luna.

Creo una nueva rama matemática o calculo diferencial, para poder estudiar y profundizar sus estudios teóricos sobre los fenómenos naturales.

Desarrolló la teoría de la gravedad entre los cuerpos del universo.

Propuso una teoría corpuscular para explicar los fenómenos ópticos.

Demás estás decir que Newton demostró que Aristóteles se había equivocado al pensar que existían dos conjuntos de leyes naturales, uno para los cielos y otro para la Tierra.

Las tres leyes del movimiento explicaban igual de bien la caída de una manzana o el rebote de una pelota que la trayectoria de la Luna. Newton demostró así que los cielos y la Tierra eran parte del mismo universo.




4. Pitágoras y los numeros



Muy cerca de la época de Tales, hace unos 2500 años había otro sabio griego llamado Pitágoras, que vivía en Crotona, en el sur de Italia. Había conseguido cuerdas de instrumentos musicales y estaba decidido a hacer algunas experiencias y relacionar los números matemáticos con las notas que esas cuerdas generaban.

Hizo muchos experimentos y fue él, el primer hombre en estudiar, no la música, sino el juego de longitudes que producía la música. ¿Por qué eran precisamente estas proporciones de números sencillos —2 a 1, 3 a 2, 4 a 3— las que originaban sonidos especialmente agradables? , había encontrado los números musicales, que tanto maravillaban sus oídos.

Y si los números eran tan importantes, valía la pena estudiarlos en sí mismos. Había que empezar a pensar, por ejemplo, en el número 2 a secas, no en dos hombres o dos manzanas. El número 2 era divisible por 2; era un número par. El número 3 no se podía dividir exactamente por 2; era un número impar. ¿Qué propiedades compartían todos los números pares? ¿Y los impares? Cabía empezar por el hecho de que la suma de dos números pares o de dos impares es siempre un número par, y la de un par y un impar es siempre impar. Siguió investigando y obtuvo los numeros cuadrados, triangulares, etc..

Mas tarde siguió con la geometría y demostró la propiedad entre los lados de un triángulo rectangulo, expresando su famosa conclusión, que casi todos todavia nos acordamos de la escuela secundaria: “el cuadrado de la hipotenusa de un triangulo rectangulo , es igual a la suma de los cuadrado de sus catetos”

Podemos decir que las enseñanzas de Pitágoras, y sobre todo su gran éxito al hallar una prueba deductiva del famoso teorema, fueron fuente de inspiración para los griegos, que prosiguieron trabajando en esta línea. En los 300 años siguientes erigieron una compleja estructura de pruebas matemáticas que se refieren principalmente a líneas y formas. Este sistema se llama «geometría».




5. Nicolás Copérnico y la Teoría Heliocéntrica



La teoría heliocéntrica sostiene que la Tierra y los demás planetas giran alrededor del Sol (Estrella del Sistema Solar). El heliocentrismo, fue propuesto en la antigüedad por el griego Aristarco de Samos, quien se basó en medidas sencillas de la distancia entre la Tierra y el Sol, determinando un tamaño mucho mayor para el Sol que para la Tierra. Por esta razón, Aristarco propuso que era la tierra la que giraba alrededor del Sol y no a la inversa, como sostenía la teoría geocéntrica de Ptolomeo e Hiparco, comúnmente aceptada en esa época y en los siglos siguientes, acorde con la visión antropocéntrica imperante.

Más de un milenio más tarde, en el siglo XVI, la teoría volvería a ser formulada, esta vez por Nicolás Copérnico, uno de los más influyentes astrónomos de la historia, con la publicación en 1543 del libro De Revolutionibus Orbium Coelestium. La diferencia fundamental entre la propuesta de Aristarco en la antigüedad y la teoría de Copérnico es que este último emplea cálculos matemáticos para sustentar su hipótesis. Precisamente a causa de esto, sus ideas marcaron el comienzo de lo que se conoce como la revolución científica. No sólo un cambio importantísimo en la astronomía, sino en las ciencias en general y particularmente en la cosmovisión de la civilización. A partir de la publicación de su libro y la refutación del sistema geocéntrico defendido por la astronomía griega, la civilización rompe con la idealización del saber incuestionable de la antigüedad y se lanza con mayor ímpetu en busca del conocimiento.




6. Einstein y la Teoría de Campo Unificada



Einstein dedicó sus últimos años a la búsqueda de una de las más importantes teorías de la física, la llamada Teoría de Campo Unificada. Dicha búsqueda, después de su Teoría general de la relatividad, consistió en una serie de intentos tendentes a generalizar su teoría de la gravitación para lograr unificar y resumir las leyes fundamentales de la física, específicamente la gravitación y el electromagnetismo. En el año 1950, expuso su Teoría de campo unificada en un artículo titulado «Sobre la teoría generalizada de la gravitación» en la famosa revista Scientific American.

Aunque Albert Einstein fue mundialmente célebre por sus trabajos en física teórica, paulitinamente fue aislándose en su investigación, y sus intentos no tuvieron éxito. Persiguiendo la unificación de las fuerzas fundamentales, Albert ignoró algunos importantes desarrollos en la física, siendo notablemente visible en el tema de las fuerzas nuclear fuerte y nuclear débil, las cuales no se entendieron bien sino después de quince años de la muerte de Einstein (cerca del año 1970) mediante numerosos experimentos en física de altas energías. Los intentos propuestos por la Teoría de cuerdas o la Teoría M, muestran que aún perdura su ímpetu de alcanzar demostrar la gran teoría de la unificación de las leyes de la física.




7. Demócrito y los átomos



Demócrito y nació hacia el año 470 a. C. en la ciudad griega de Abdera. Siempre tenía una actitud risueña, y agradable, sus conciudadanos los llamaban “el filósofo ruiseño” y puede que tomaran esa actitud suya por síntoma de locura, porque dice la leyenda que le tenían por lunático y que llegaron a recabar la ayuda de doctores para que le curaran.

Demócrito parecía albergar, desde luego, ideas muy peregrinas. Le preocupaba, por ejemplo, hasta dónde se podía dividir una gota de agua. Uno podía ir obteniendo gotas cada vez más pequeñas hasta casi perderlas de vista. Pero ¿había algún límite? ¿Se llegaba alguna vez hasta un punto en que fuese imposible seguir dividiendo?

Demócrito anunció su convicción de que cualquier sustancia podía dividirse hasta un límite y no más. El trozo más pequeño o partícula de cualquier clase de sustancia era indivisible, y a esa partícula mínima la llamó átomos, que en griego quiere decir «indivisible». Según Demócrito, el universo estaba constituido por esas partículas diminutas e indivisibles. En el universo no había otra cosa que partículas y espacio vacío entre ellas.

Pero fue a finales de 1700 cuando el químico Joseph Louis Proust, químico francés, realizó mediciones muy cuidadosas de la formación de compuestos químicos, como por ejemplo el carbonato de cobre y comprobó, por ejemplo, que siempre que el cobre, el oxígeno y el carbono formaban carbonato de cobre, se combinaban en las mismas proporciones de peso: cinco unidades de cobre por cuatro de oxígeno por una de carbono. Dicho de otro modo, si Proust usaba cinco onzas de cobre para formar el compuesto, tenía que usar cuatro de oxígeno y una de carbono.

Poco más adelante, otro gran químico inglés llamado Dalton, pensó:¡Qué extraño!, «¿Por qué ha de ser así?» y analizó la posibilidad de las partículas indivisibles. ¿No sería que la partícula de oxígeno pesa siempre cuatro veces más que la de carbono, y la de cobre cinco veces más que ésta? Al formar carbonato de cobre por combinación de una partícula de cobre, otra de oxígeno y otra de carbono, la proporción de pesos sería entonces 5:4:1.

Dalton anunció su teoría revolucionaria de las partículas indivisibles hacía el año 1803, pero ahora en forma algo diferente. Ya no era cuestión de creérsela o no. A sus espaldas tenía todo un siglo de experimentación química, y de esta manera pudo confirmar aquella primera e inocente idea que 2000 años antes Demócrito había propuesto al mundo griego.




8. Hipócrates y la Medicina



¡Qué maravilloso es el milagro de la vida y qué asombrosas son las cosas vivientes! La planta más minúscula, el animal más ínfimo parece más complejo e interesante que la masa más grande de materia inerte que podamos imaginar.

Porque, a fin de cuentas, la materia inerte no parece hacer nada la mayor parte del tiempo. O si hace algo, actúa de un modo mecánico y poco interesante. Pensemos en una piedra que yace en el camino. Si nada la molesta, seguirá allí por los siglos de los siglos. Si le damos una patada, se moverá y volverá a detenerse. Le damos más fuerte y se alejará un poco más. Si la tiramos al aire, describirá una curva de forma determinada y caerá. Y si la golpeamos con un martillo, se romperá.

Con algo de experiencia es posible predecir exactamente lo que le ocurrirá a la piedra en cualquier circunstancia. Uno puede describir sus avatares en términos de causa y efecto. Si se hace tal cosa con la piedra (causa), le ocurrirá tal otra (efecto). La creencia de que iguales causas obran más o menos los mismos efectos en todas las ocasiones conduce a la visión del universo que llamamos «mecanicismo»




9. Tales de Mileto y su idea de la ciencia



El pensador griego Tales en el año 600 a.C. se preguntó lo siguiente: ¿De qué está compuesto el universo?, y dio una respuesta, “Todas las cosas son de agua”. Por supuesto la idea era incorrecta, pero aun así es uno de los enunciados más importantes en la historia de la ciencia, porque sin él —u otro equivalente— no habría ni siquiera lo que hoy entendemos por «ciencia».
No es para sorprenderse que haya dado esta respuesta, pues Tales nació y se crió en un mundo rodeado de mares y océanos.

El continente, la tierra firme, tenía, según Tales, la forma de un disco de algunos miles de millas de diámetro, flotando en medio de un océano infinito. Tampoco ignoraba que el continente propiamente dicho estaba surcado por las aguas. Había ríos que lo cruzaban, lagos diseminados aquí y allá y manantiales que surgían de sus entrañas. El agua se secaba y desaparecía en el aire, para convertirse luego otra vez en agua y caer en forma de lluvia. Había agua arriba, abajo y por todas partes.

En aquella época lo importante era construir templos y altares, inventar rezos y rituales de sacrificio, fabricar ídolos y hacer magia. Y lo malo es que nada podía descalificar este sistema. Porque supongamos que, pese a todo el ritual, sobrevenía la sequía o se desataba la plaga. Lo único que significaba aquello es que los curanderos habían incurrido en error u omitido algún rito; lo que tenían que hacer era volver a intentarlo, sacrificar más reses y rezar con más fruición.

En cambio, Tales sus discípulos plantearon una hipótesis (que era correcta), decían que universo funcionaba de acuerdo con leyes naturales que no variaban, y entonces sí que merecía la pena estudiar el universo, observar cómo se mueven las estrellas y cómo se desplazan las nubes, cómo cae la lluvia y cómo crecen las plantas, y además en la seguridad de que estas observaciones serían válidas siempre y de que no se verían alteradas inopinadamente por la voluntad de ningún dios.

Y entonces sería posible establecer una serie de leyes elementales que describiesen la naturaleza general de las observaciones. La primera hipótesis de Tales condujo así a una segunda: la razón humana es capaz de esclarecer la naturaleza de las leyes que gobiernan el universo.

Este pensamiento tan elemental en nuestra vida de hoy, fue la gran idea de Tales, de comenzar a estudiar, y explicar los fenómenos naturales a través de nuestra razón, observando y experimentando.




10. Wöhler y la Química orgánica



El joven químico, alemán Friedrich Wöhler sabía en 1828 qué era exactamente lo que le interesaba: estudiar los metales y minerales. Estas sustancias pertenecían a un campo, la química inorgánica, que se ocupaba de compuestos que supuestamente nada tenían que ver con la vida. Frente a ella estaba la química orgánica, que estudiaba aquellas sustancias químicas que se formaban en los tejidos de las plantas y animales vivos.

El maestro de Wöhler, el químico sueco Jöns J. Berzelius, había dividido la química en estos dos compartimentos y afirmado que las sustancias orgánicas no podían formarse a partir de sustancias inorgánicas en el laboratorio. Sólo podían formarse en los tejidos vivos, porque requerían la presencia de una «fuerza vital».




11. Joule y el Calor



La capacidad de realizar trabajo se llama «energía». Los objetos en movimiento poseen energía de movimiento o «energía cinética». Una flecha en reposo es casi inofensiva, pero lanzada en rápido movimiento puede perforar la gruesa piel de un animal. Y muchos habrán visto esas demoledoras que pulverizan muros de ladrillo con un enorme péndulo de acero.

Cuando Newton enunció sus leyes del movimiento en los años 80 del siglo XVII, dijo que cualquier objeto en movimiento continuaría moviéndose a la misma velocidad a menos que una fuerza exterior actuara sobre él. Dicho de otro modo, la energía cinética de un objeto tenía que permanecer constante.

Y aquí entra a actuar la idea de Joule, que pensó que el calor debía ser otra forma más de energía, igual que cinética, eléctrica, química, magnética. Por consiguiente, una cantidad dada de energía debería producir siempre la misma cantidad de calor. En 1840, cuando sólo tenía 22 años, comenzó a hacer mediciones muy precisas con el fin de comprobar esa posibilidad.

Luego de tediosos e ingeniosos experimentos, 1847 Joule estaba ya convencido de que una cantidad dada de energía de cualquier tipo producía siempre la misma cantidad de calor. (La energía se puede medir en ergios y el calor en calorías.) Joule demostró que siempre que se consumían unos 41.800.000 ergios de energía de cualquier tipo, se producía 1 caloría.

Esta relación entre energía y calor se denomina «equivalente mecánico del calor». Más tarde se introdujo en honor de Joule otra unidad de energía llamada «joule» o «julio». El julio es igual a 10 millones de ergios, y una caloría equivale a 4'18 julios.




12. Faraday y la aplicacion practica de los campos magneticos



Los científicos de principios del siglo XVIII pensaban que el universo entero funcionaba a base de estas fuerzas de contacto: era lo que se llama una visión mecanicista del universo.

¿Podían existir fuerzas sin contacto? Sin duda: una de ellas era la fuerza de gravitación explicada por el propio Newton. La Tierra tiraba de la Luna y la mantenía en su órbita, pero no la tocaba en absoluto. Entre ambos cuerpos no mediaba absolutamente nada, ni siquiera aire; pero aun así, ambas estaban ligadas por la gran fuerza gravitatoria.

Otra clase de fuerza sin contacto cabe observarla si colocamos una barra de hierro vertical perfectamente en equilibrio. Lo único que necesitamos es un pequeño imán. Lo acercamos a la punta superior de la barra y ésta se inclina hacia el imán y cae. El imán no necesita tocar para nada la barra, ni tampoco es es el aire el causante del fenómeno, porque exactamente lo mismo ocurre en el vacío.

El científico inglés Michael Faraday abordó en 1831 el problema de esa misteriosa fuerza. Colocó dos imanes sobre una mesa de madera, con el polo norte de uno mirando hacia el polo sur del otro. Los imanes estaban suficientemente cerca como para atraerse, pero no tanto como para llegar a juntarse; la atracción a esa distancia no era suficiente para superar el rozamiento con la mesa. Faraday sabía, sin embargo, que la fuerza estaba ahí, porque si dejaba caer limaduras de hierro entre los dos imanes, aquéllas se movían hacia los polos y se quedaban pegadas a ellos. Como explicar ese fenómeno invisible y mágico?

Para experimentar usó un papel blanco sobre los imanes y livianas limaduras de hierro, y pudo observar que las mismas se movían sobre el papel y se acomodaban siguiendo líneas muy parecidas en formas de arcos, a las que llamó lineas magnéticas, que a su vez eran generadas por un poder especial, llamado campo magnético.

Hasta entonces la corriente eléctrica sólo se podía obtener con baterías, que son recipientes cerrados en cuyo interior reaccionan ciertas sustancias químicas. La electricidad generada con baterías era bastante cara. El nuevo descubrimiento de Faraday permitía generarla con una máquina de vapor que moviera ciertos objetos a través de líneas magnéticas de fuerza. La electricidad obtenida con estos generadores de vapor era muy barata y podía producirse en grandes cantidades. Cabe decir, pues, que fueron las líneas magnéticas de fuerza las que electrificaron el mundo en el siglo XX.




13. Lavoisier y los gases



Van Helmont observó que al echar, por ejemplo, trocitos de plata en un corrosivo muy fuerte llamado ácido nítrico, la plata se disolvía y un vapor rojo borboteaba y dibujaba rizos por encima de la superficie del líquido. ¿Era aquello aire? ¿Quién había visto jamás aire rojo? ¿Quién había oído jamás hablar de un aire que podía verse?

Van Helmont conocía el mito griego según el cual el universo fue en su origen materia tenue e informe que llenaba todo el espacio. Los griegos llamaban a esta materia primigenia “caos”, pero van Helmont que era flamenco escribió la palabra tal y como la pronunciaba: «gas».

Luego de arduas experimentaciones y cuando lograron retener en alguna cámara estanca el gas de las reacciones químicas, se pudieron conocer decenas de nuevos “aires” y el químico francés que hoy no ocupa la atención, Antoine-Laurent Lavoisier estaba enfrascado en el problema de la combustión. La combustión —es decir, el proceso de arder u oxidarse una sustancia en el aire— era algo que nadie terminaba de comprender.

Lavoisier no fue, claro está, el primero en estudiar la combustión; pero tenía una ventaja sobre sus predecesores, y es que creía firmemente que las mediciones precisas eran parte esencial de un experimento. La idea de tomar medidas cuidadosas tampoco era nueva, pues la introdujo doscientos años antes Galileo; pero fue Lavoisier quien la extendió a la química.

Lavoisier tenía, pues, buenas razones para sospechar que detrás de los cambios de peso que se producían en la combustión estaban los gases. Mas ¿cómo probar su sospecha? No bastaba con pesar las cenizas y la herrumbre; había que pesar también los gases, pero como podía hacerlo?

Lavoisier comenzó por pesar con todo cuidado el recipiente estanco, junto con la sustancia sólida y el aire retenido dentro. Luego calentó aquélla enfocando la luz solar por medio de una gran lupa o encendiendo un fuego debajo. Una vez que la sustancia se había quemado o aherrumbrado, volvió a pesar el recipiente junto con su contenido.

El proceso lo repitió con diversas sustancias, y en todos los casos, independientemente de qué fuese lo que se quemara o aherrumbrara, el recipiente sellado no mostró cambios de peso.
Imaginemos, por ejemplo, un trozo de madera reducido a cenizas por combustión. Las cenizas, como es lógico, pesaban menos que la madera, pero la diferencia de peso quedaba compensada por el del gas liberado, de manera que, a fin de cuentas, el peso del recipiente no variaba.

Este es el famoso «principio de conservación de la materia». Y esta idea de que la materia es indestructible ayudó a aceptar, treinta años más tarde, la teoría de que la materia se compone de átomos indestructibles.




14. Planck y los cuantos



A mediados del siglo XIX la ciencia descubrió que la luz proporcionaba a cada elemento químico una especie de «huellas digitales». Veamos cómo puede utilizarse la luz para distinguir un elemento de otro.

Si se calienta un elemento hasta la incandescencia, la luz que emite estará constituida por ondas de diversas longitudes. El grupo de longitudes de onda que produce el elemento difiere del de cualquier otro elemento.

Cada longitud de onda produce un efecto diferente en el ojo y es percibida, por tanto, como un color distinto de los demás. Supongamos que la luz de un elemento dado es descompuesta en sus diversas ondas. Este grupo de longitudes de onda, que es característico del elemento, se manifiesta entonces en la forma de un patrón de colores también singular. Pero ¿cómo se puede desglosar la luz de un elemento incandescente en ondas elementales?

Una manera consiste en hacer pasar la luz por una rendija y luego por un trozo triangular de vidrio que se denomina prisma. El prisma refracta cada onda en medida diferente, según su longitud, y forma así imágenes de la rendija en los colores que se hallan asociados con las longitudes de onda del elemento. El resultado es un «espectro» de rayas de color cuya combinación difiere de la de cualquier otro elemento.

Este procedimiento lo elaboró con detalle el físico alemán Gustav Robert Kirchhoff en 1859. Kirchhoff y el químico alemán Robert Wilhelm von Bunsen inventaron el espectroscopio —el instrumento descrito anteriormente— y lo emplearon para estudiar los espectros de diversos elementos. Y, de paso, descubrieron dos elementos nuevos al hallar combinaciones de rayas que no coincidían con las de ningún elemento conocido.

Otros científicos detectaron más tarde la huella de elementos terrestres en los espectros del Sol y las estrellas. Por otro lado, el elemento helio fue descubierto en el Sol en 1868, mucho antes de ser detectado en la Tierra. Estos estudios de los espectros demostraron finalmente que la materia que constituye el universo es en todas partes la misma.

El hallazgo más importante de Kirchhoff fue éste: que cuando un elemento es calentado hasta emitir luz de ciertas longitudes de onda, al enfriarse tiende a absorber esas mismas longitudes de onda.




15. Los demonios expulsados (Hipócrates)



Este tratado mantiene con vehemencia la inutilidad de atribuir la enfermedad a los demonios. Cada enfermedad tiene su causa natural, y compete al médico descubrirla. Conocida la causa, puede hallarse el remedio. Y esto es incluso cierto —así lo afirma el tratado— para ese mal misterioso y aterrador que se llama epilepsia. No es de ningún modo un mal sagrado, sino una enfermedad como cualquier otra.

Lo que en resumidas cuentas defiende el tratado es que la idea de causa y efecto se aplica también a las cosas vivientes, entre ellas el hombre. Como el mundo de lo vivo es tan complejo, puede que no sea fácil detectar las relaciones de causa y efecto; pero al final puede y debe hacerse.

La Medicina tuvo que luchar durante muchos siglos contra la creencia común en demonios y malos espíritus y contra el uso de ritos y conjuros mágicos con fines terapéuticos. Pero las ideas de Hipócrates no cayeron jamás en el olvido.

La doctrina de Hipócrates sobre el tratamiento de los enfermos le ha valido el nombre de «padre de la Medicina». En realidad es más que eso, pues aplicó la noción de ley natural a los seres vivos y dio así el primer gran paso contra el vitalismo. Desde el momento en que se aplicó la ley natural a la vida, los científicos pudieron empezar a estudiarla sistemáticamente. Por eso, las ideas de Hipócrates abrieron la posibilidad de una ciencia de la vida (biología), lo cual le hace acreedor a un segundo título, el de «padre de la biología».




16. Russell y la Evolución Estelar



Aristóteles pensaba que la Tierra y los cielos estaban regidos por leyes diferentes.Allí, según él, reinaba el cambio errático: sol y tormenta, crecimiento y descomposición. Aquí, por el contrario, no había cambio: el Sol, la Luna y los planetas giraban en los cielos de forma tan mecánica que cabía predecir con gran antelación el lugar que ocuparían en cualquier instante, y las estrellas jamás se movían de su sitio.

Había objetos, para qué negarlo, que parecían estrellas fugaces. Pero según Aristóteles no caían de los cielos, eran fenómenos que ocurrían en el aire, y el aire pertenecía a la Tierra. (Hoy sabemos que las estrellas fugaces son partículas más o menos grandes que entran en la atmósfera terrestre desde el espacio exterior. La fricción producida al caer a través de la atmósfera hace que ardan y emitan luz. Así pues, Aristóteles en parte tenía razón y en parte estaba equivocado en el tema de las estrellas fugaces. Erraba al pensar que no venían de los cielos, pero estaba en lo cierto porque realmente se hacen visibles en el aire. Y es curioso que las estrellas fugaces se llaman también «meteoros», palabra que en griego quiere decir «cosas en el aire»).

En el año 134 a. C, dos siglos después de morir Aristóteles, el astrónomo griego Hiparco observó una estrella nueva en la constelación del Escorpión. ¿Qué pensar de aquello? ¿Acaso las estrellas podían «nacer»? ¿Es que, después de todo, los cielos podían cambiar?

Hiparco, en previsión de que su observación no fuese correcta y de que la estrella hubiera estado siempre allí, confeccionó un mapa de más de mil estrellas brillantes, para así ahorrar engaños a todos los futuros astrónomos. Aquel fue el primer mapa estelar, y el mejor durante los mil seiscientos años siguientes. Pero durante siglos no volvieron a registrarse nuevas estrellas.

En el año 1054 d. C. apareció un nuevo astro en la constelación del Toro, que sólo fue observado por los astrónomos chinos y japoneses. La ciencia europea pasaba por momentos bajos, tanto que ningún astrónomo reparó en el nuevo lucero, a pesar de que durante semanas lució con un brillo mayor que el de cualquier otro cuerpo celeste, exceptuando el Sol y la Luna.

En 1572 volvió a surgir un nuevo astro brillante, esta vez en la constelación de Casiopea. Para entonces la ciencia empezaba a florecer de nuevo en Europa, y los astrónomos escrutaban celosamente los cielos. Entre ellos estaba un joven danés llamado Tycho Brahe, quien observó la estrella y escribió sobre ella un libro titulado De Nova Stella («Sobre la nueva estrella»). Desde entonces las estrellas que surgen de pronto en los cielos se llaman «novas».




17. Linneo y la Clasificación



La mente científica más influyente en la historia del mundo quizá haya sido la del filósofo griego Aristóteles (384 a. C. - 322 a. C). La ideas de Aristóteles acerca de temas biológicos, que eran uno de sus puntos fuertes, ejercieron menos influencia, en la ciencias, que muchos otros de sus temas estudiados. La ciencia natural era su campo preferido, y dedicó años al estudio de los animales marinos.

Aristóteles no se conformó con contemplar los animales y describirlos. Ayudado por su claridad de ideas y su amor por el orden, fue más lejos y clasificó los animales en grupos. Esa clasificación se llama hoy «taxonomía», que en griego significa «sistema de ordenación».

Todo el mundo tiene cierta tendencia a clasificar las cosas. Salta a la vista que los leones y los tigres se parecen bastante, que las ovejas se parecen a las cabras y que las moscas se parecen a los tábanos.

Aristóteles, sin embargo, no se conformó con observaciones casuales, sino que hizo una lista de más de quinientos tipos diferentes de animales y los agrupó cuidadosamente en clases. Y además, colocó estas clases en orden, desde las más simples a las más complicadas.

Aristóteles observó que algunos animales no pertenecían a la clase a la que parecían asemejarse más. Casi todo el mundo daba por supuesto, por ejemplo, que el delfín era un pez: vivía en el agua y tenía la misma forma que los peces. Aristóteles, por el contrario, observó que el delfín respiraba aire, paría crías vivas y nutría al feto mediante un órgano llamado «placenta». El delfín se parecía en estos aspectos a las bestias cuadrúpedas de tierra firme, por lo cual lo incluyó entre los mamíferos, y no entre los peces.

Los naturalistas ignoraron esta conclusión, absolutamente correcta, durante dos mil años, hasta que un joven naturalista sueco Carl von Linné publicó en 1735 un opúsculo en el que alistaba diferentes criaturas según un sistema de su invención. (Hoy se le conoce más por la versión castellanizada de su nombre, que es Linneo, o por la latina, Carolus Linnaeus.) Su trabajo estaba basado en viajes intensivos por toda Europa, incluido el norte de Escandinavia, que hasta entonces no había sido bien explorado.

Linneo describía breve y claramente cada clase o especie de planta y animal, agrupaba luego cada colección de especies similares en un género y daba finalmente a cada clase de planta o animal dos nombres latinos: el del género y el de la especie.

Un ejemplo: el gato y el león son dos especies muy parecidas, pese a que el segundo es mucho más grande y fiero que el primero; de ahí que ambos pertenezcan al mismo género, Felis (que en latín es «gato»). El segundo nombre latino sirve para distinguir el gato común del león y de otras especies del mismo género. Así, el gato es Felis domesticus, mientras que el león es Felis leo.

Análogamente, el perro y el lobo pertenecen al género Canis («perro»). El perro es Canis familiaris y el lobo Canis lupus.

Linneo dio también a los seres humanos un nombre latino. Al hombre lo colocó en el género Homo y a la especie humana la llamó Homo sapiens («hombre sabio»).

La clasificación de la vida dio así lugar a la idea de que todos los seres vivientes estaban inmersos en un mismo y único fenómeno. Y este concepto conduciría, a su vez, a una de las indiscutiblemente «grandes ideas de la ciencia»: la evolución de las especies.




18. El enfoque vitalista



Berzelius, como vemos, era vitalista, partidario del «vitalismo». Creía que la materia viva obedecía a leyes naturales distintas de las que regían sobre la materia inerte. Más de dos mil años antes, Hipócrates había sugerido que las leyes que regulaban ambos tipos de materia eran las mismas. Pero la idea seguía siendo difícil de digerir, porque los tejidos vivos eran muy complejos y sus funciones no eran fáciles de comprender. Muchos químicos estaban por eso convencidos de que los métodos elementales del laboratorio jamás servirían para estudiar las complejas sustancias de los organismos vivos.

Wöhler trabajaba, como decimos, con sustancias inorgánicas, sin imaginarse para nada que estaba a punto de revolucionar el campo de la química orgánica. Todo comenzó con una sustancia inorgánica llamada cianato amónico, que al calentarlo se convertía en otra sustancia. Para identificarla, Wöhler estudió sus propiedades, y tras eliminar un factor tras otro comenzó a subir de punto su estupor.

Wöhler, no queriendo dejar nada en manos del azar, repitió una y otra vez el experimento; el resultado era siempre el mismo. El cianato amónico, una sustancia inorgánica, se había transformado en urea, que era un conocido compuesto orgánico. Wöhler había hecho algo que Berzelius tenía por imposible: obtener una sustancia orgánica a partir de otra inorgánica con sólo calentarla.

El revolucionario descubrimiento de Wöhler fue una revelación; muchos otros químicos trataron de emularle y obtener compuestos orgánicos a partir de inorgánicos. El químico francés Pierre E. Berthelot formó docenas de tales compuestos en los años cincuenta del siglo pasado, al tiempo que el inglés William H. Perkin obtenía una sustancia cuyas propiedades se parecían a las de los compuestos orgánicos pero que no se daba en el reino de lo viviente. Y luego siguieron miles y miles de otros compuestos orgánicos sintéticos.

Los químicos estaban ahora en condiciones de preparar compuestos que la naturaleza sólo fabricaba en los tejidos vivos. Y además eran capaces de formar otros, de la misma clase, que los tejidos vivos ni siquiera producían.

Todos estos hechos no lograron, sin embargo, acabar con las explicaciones vitalistas. Podía ser que los químicos fuesen capaces de sintetizar sustancias formadas por los tejidos vivos —replicaron los partidarios del vitalismo—, pero cualitativamente era diferente el proceso. El tejido vivo formaba esas sustancias en condiciones de suave temperatura y a base de componentes muy delicados, mientras que los químicos tenían que utilizar mucho calor o altas presiones o bien reactivos muy fuertes.

Ahora bien, los químicos sabían cómo provocar, a la temperatura ambiente, reacciones que de ordinario sólo ocurrían con gran aporte de calor. El truco consistía en utilizar un catalizador. El polvo de platino, por ejemplo, hacía que el hidrógeno explotara en llamas al mezclarse con el aire. Sin el platino era necesario aportar calor para iniciar la reacción.




19. Rumford



A lo largo de su vida hizo muchos experimentos de interés y llegó a numerosas conclusiones importantes. La más señalada tuvo como escenario Baviera, donde estuvo al frente de una fábrica de cañones. Los cañones se hacían vertiendo el metal en moldes y taladrando luego la pieza para formar el alma. Esta última operación se efectuaba con una taladradora rápida.

Como es lógico, el cañón y el taladro se calentaban y había que estar echando constantemente agua fría por encima para refrigerarlos. Al ver salir el calor, la mente incansable de Rumford se puso en funcionamiento.

Antes de nada, ¿qué era el calor? Los científicos de aquella época, entre ellos el gran químico francés Lavoisier, creían que el calor era un fluido ingrávido que llamaban calórico. Al introducir más calórico en una sustancia ésta se calentaba, hasta que finalmente el calórico rebosaba y fluía en todas direcciones. Por eso, la calidez de un objeto al rojo vivo se dejaba sentir a gran distancia. El calor del Sol, por ejemplo, se notaba a 150 millones de kilómetros. Al poner en contacto un objeto caliente con otro frío, el calórico fluía desde el primero al segundo. Ese flujo hacía que el objeto caliente se enfriara y que el frío se calentara.

La teoría funcionaba bastante bien, y muy pocos científicos la ponían en duda. Uno de los que sí dudó fue Rumford, preguntándose por qué el calórico salía del cañón. Los partidarios de la teoría del calórico contestaron que era porque el taladro rompía en pedazos el metal, dejando que el calórico contenido en éste fluyese hacia afuera, como el agua de un jarrón roto.

Rumford, escéptico, revolvió entre los taladros y halló uno completamente romo y desgastado. «Utilizad éste», dijo. Los obreros objetaron que no servía, que estaba gastado; pero Rumford repitió la orden en tono más firme y aquéllos se apresuraron a cumplirla.

El taladro giró en vano, sin hacer mella en el metal; pero en cambio producía aún más calor que uno nuevo. Imagínense la extrañeza de los obreros al ver el gesto complacido del conde.

Rumford vio claro que el calórico no se desprendía por la rotura del metal, y que quizá no procediese siquiera de éste. El metal estaba inicialmente frío, por lo cual no podía contener mucho calórico; y, aun así, parecía que el calórico fluía en cantidades ilimitadas.

Rumford, para medir el calórico que salía del cañón, observó cuánto se calentaba el agua utilizada para refrigerar el taladro y el cañón, y llegó a la conclusión de que si todo ese calórico se reintegrara al metal, el cañón se fundiría.


Todas las propiedades del calor podían ser exploradas igual de bien por la teoría cinética que por la del calórico. Pero aquélla daba fácilmente cuenta de algunas propiedades (como las descritas por Rumford) que la teoría del calórico no había conseguido explicar bien.

La teoría del calórico describía la transferencia de calor como un flujo de calórico desde el objeto caliente al frío. Según la teoría cinética, la transferencia de calor era resultado del movimiento de moléculas. Al poner en contacto un cuerpo caliente con otro frío, sus moléculas, animadas de rápido movimiento, chocaban con las del objeto frío, que se movían más lentamente. Como consecuencia de ello, las moléculas rápidas perdían velocidad y las lentas se aceleraban un poco, con lo cual «fluía» calor del cuerpo caliente al frío.

La concepción del calor como una forma de movimiento es otra de las grandes ideas de la ciencia. Maxwell le dio mayor realce aún mostrando cómo utilizar el movimiento aleatorio para explicar ciertas leyes muy concretas de la naturaleza cuyo efecto era totalmente predecible y nada aleatorio.

La idea de Maxwell fue luego ampliada notablemente, y los científicos dan hoy por supuesto que el comportamiento aleatorio de átomos y moléculas pueden producir resultados muy asombrosos. Cabe, inclusive, que la vida misma fuese creada a partir de la materia inerte en los océanos mediante movimientos aleatorios de átomos y moléculas.




20. El "mal sagrado" (Hipócrates)



La epilepsia, que hoy sabemos que es un trastorno del cerebro, era atribuida también a la acción de un espíritu. La persona que lo sufre pierde de vez en cuando el control de su cuerpo durante algunos minutos, cayéndose al suelo, mostrando convulsiones, etc. Después recuerda muy poco de lo ocurrido. Antiguamente la gente estaba convencida de que veía entrar un demonio en el cuerpo de la persona afectada y que era él el que lo agitaba; los griegos llamaban por eso el «mal sagrado» a la epilepsia.

Mientras la manera de clasificar esta enfermedad fue tan poco científica, el método de tratamiento no podía tener otro carácter. La terapia indicada consistía en ahuyentar o exorcizar a los demonios. Las tribus primitivas siguen teniendo «brujos» y curanderos que lanzan conjuros y ejecutan ritos para que los espíritus malignos salgan de la persona enferma. Y la gente cree realmente que el enfermo sanará en el momento en que sean expulsados los malos espíritus.

El dios griego de la Medicina se llamaba Asclepio, y los sacerdotes de Asclepio eran médicos. Uno de los templos más importantes de este dios estaba en la isla de Cos, en el Mar Egeo (frente a la costa occidental de la actual Turquía). Hacia el año 400 a. C. el médico más importante en la isla de Cos era un hombre llamado Hipócrates.

Hipócrates tenía una manera de ver las cosas que era nueva para los griegos, pues creía que lo que había que hacer era tratar al paciente, y no preocuparse del demonio que hubiera o dejara de haber dentro de él. Hipócrates no fue el primero en pensar así, pues las viejas civilizaciones de Babilonia y Egipto tuvieron muchos médicos que defendían esta actitud, y dice la leyenda que Hipócra




Cya boyz

+1
0
0
5
0No comments yet