Check the new version here

Popular channels

El último teorema de Fermat y Los Simpsons

En 1995 se emite este capítulo de Los Simpsons en el que, entre otras cosas, Homero salta a otra dimensión y, a través de una puerta, aparece en el mundo humano. El episodio la verdad es que es bastante friki, pero mucha gente no se dio cuenta de un detalle, digamos, enigmático. Mientras Homero está en ese mundo entre lo animado y lo humano aparece en imagen lo siguiente:



Homero en primer plano y una igualdad a su espalda:

1782¹² + 1841¹² = 1922¹²
Bah, algo sin demasiada importancia. Una igualdad como otra cualquiera que digo yo que será cierta…¿Seguro?. Comprobémoslo. Por ejemplo, vayámonos a Wiris y hagamos la raíz de índice 12 de 1782 1² + 1841 1². ¿Cuál es el resultado?. Pues sí, 1922. Esto, evidentemente, demuestra que la igualdad es cierta…¿Seguro?. Pues no, esa igualdad no es cierta (hay una forma de demostrarlo en solamente un reglón y sin necesidad de realizar ningún cálculo…¿se le ocurre a alguien?). Y no es cierta por lo siguiente: el último teorema de Fermat fue demostrado en ese mismo año, 1995. Incógnita resuelta, la igualdad no es cierta y su inclusión en ese capítulo es simplemente una genialidad de los creadores de la serie. Pero…¿por qué en la calculadora anterior sí se cumple?. Pues muy sencillo. Vamos a ver concretamente los resultados de cada una de las operaciones:

1782¹² = 1025397835622633634807550462948226174976
1841¹² = 1515812422991955541481119495194202351681

1782¹² + 1841¹² = 2541210258614589176288669958142428526657
1922¹² = 2541210259314801410819278649643651567616


Como podemos ver la suma de las dos primeras potencias y la tercera se parecen mucho. De hecho coinciden en las 9 primeras cifras, y si redondeamos los dos números a 10 cifras son iguales. Esa es la clave. Me explico: David X. Cohen, uno de los guionistas y productores de Futurama y Los Simpsons había escrito un programa que buscaba combinaciones de x, y, z y n que parecían cumplir el último teorema de Fermat en una calculadora. Pero como comenté un poco más arriba sin necesidad de realizar ningún cálculo se puede echar por tierra esa igualdad.

Pero Cohen no se rindió. Y tiempo después, en 1998, nos brindó otra perla del estilo:

3987¹² + 4365¹² = 4472¹²
Y ésta no la podemos refutar con el sencillo argumento con el que podemos hacerlo con la anterior. Pero, evidentemente, sigue sin ser cierta. Os pongo los resultados:

3987¹² = 16134474609751291283496491970515151715346481
4365¹² = 47842181739947321332739738982639336181640625

3987¹² + 4365 1² = 63976656349698612616236230953154487896987106
4472¹² = 63976656348486725806862358322168575784124416


Nuevamente si redondeamos a 10 cifras ambos números obtenemos el mismo resultado.

Y eso es lo que hace la calculadora que os puse antes con números tan grandes: redondea hasta donde, digamos, puede trabajar. Es el problema de las calculadoras: cuando trabajamos con un cierto número de cifras nos salimos del rango máximo de trabajo de la misma y eso produce un error que la máquina soluciona redondeando. De todas formas, aun conociendo ese error, es complicadísimo encontrar un ejemplo como los dos que encontró Cohen. Y es que ser Licenciado en Física por la Universidad de Harvard además de tener un Máster en Ciencias Computacionales por la Universidad de Berkeley tenía que servir de algo.

Y ni mucho menos éste es el único guiño matemático que podemos encontrar en Los Simpsons.
0
0
0
0No comments yet