Canales populares

Físicos del MIT crean una nueva forma de luz

donde los fotones interactúan

Físicos del MIT crean una nueva forma luz

Científicos del MIT, la Universidad de Harvard y otros han demostrado que los fotones pueden interactuar, un logro que podría abrir el camino hacia el uso de fotones en la computación cuántica, si no en sables de luz. Crédito de la imagen: Christine Daniloff / MIT

Prueba un experimento rápido: toma dos linternas en una habitación oscura y enciendelas para que se crucen sus haces de luz. ¿Notaste algo peculiar? La respuesta bastante anticlimática es, probablemente no. Eso es porque los fotones individuales que componen la luz no interactúan entre sí. En cambio, simplemente se cruzan, como espíritus indiferentes en la noche.

Pero, ¿qué pasaría si las partículas de luz pudieran interactuar, atraerse y repelerse entre sí como los átomos en la materia común? Una posibilidad es tentadora, aunque de ciencia ficción: sables de luz: rayos de luz que pueden tirar y empujarse unos sobre otros, lo que crea enfrentamientos épicos deslumbrantes. O, en un escenario más probable, dos haces de luz podrían encontrarse y fusionarse en una sola corriente luminosa.

Puede parecer que tal comportamiento óptico requeriría doblar las reglas de la física, pero de hecho, los científicos del MIT, la Universidad de Harvard y otros han demostrado que los fotones pueden interactuar, un logro que podría abrir el camino hacia el uso de fotones. en computación cuántica, si no en sables de luz.

En un artículo publicado hoy en la revista Science, el equipo, dirigido por Vladan Vuletic, el profesor de física Lester Wolfe en el MIT, y el profesor Mikhail Lukin de la Universidad de Harvard, informa que ha observado grupos de tres fotones interactuando y, en efecto, pegándose para formar un tipo completamente nuevo de materia fotónica.

En experimentos controlados, los investigadores encontraron que cuando brillaban un rayo láser muy débil a través de una nube densa de átomos de rubidio ultrafríos, en lugar de salir de la nube como fotones individuales, aleatoriamente espaciados, los fotones se unían en pares o trillizos, lo que sugería algún tipo de interacción, en este caso, atracción, que tiene lugar entre ellos.

Mientras que los fotones normalmente no tienen masa y viajan a 300,000 kilómetros por segundo (la velocidad de la luz), los investigadores encontraron que los fotones encuadernados en realidad adquirieron una fracción de la masa de un electrón. Estas partículas de luz recién pesadas también eran relativamente lentas, viajando aproximadamente 100.000 veces más lento que los fotones normales que no interactúan.

Vuletic dice que los resultados demuestran que los fotones pueden atraerse o enredarse entre sí. Si se les puede hacer interactuar de otras maneras, los fotones se pueden aprovechar para realizar cómputos cuánticos extremadamente rápidos e increíblemente complejos.

"La interacción de los fotones individuales ha sido un sueño muy largo durante décadas", dice Vuletic.

Los coautores de Vuletic incluyen a Qi-Yung Liang, Sergio Cantu y Travis Nicholson del MIT, Lukin y Aditya Venkatramani de Harvard, Michael Gullans y Alexey Gorshkov de la Universidad de Maryland, Jeff Thompson de la Universidad de Princeton y Cheng Ching de la Universidad de Chicago.

Engrandeciendolo aun más grande

Vuletic y Lukin dirigen el MIT-Harvard Center for Ultracold Atoms, y juntos han estado buscando formas, tanto teóricas como experimentales, para fomentar las interacciones entre los fotones. En 2013, el esfuerzo valió la pena, ya que el equipo observó pares de fotones interactuando y uniéndose por primera vez, creando un estado de materia completamente nuevo.

En su nuevo trabajo, los investigadores se preguntaron si las interacciones podrían tener lugar no solo entre dos fotones, sino más.

"Por ejemplo, puedes combinar moléculas de oxígeno para formar O2 y O3 (ozono), pero no O4, y para algunas moléculas no puedes formar ni siquiera una molécula de tres partículas", dice Vuletic. "Entonces, era una pregunta abierta: ¿puedes agregar más fotones a una molécula para hacer cosas cada vez más grandes?"

Para averiguarlo, el equipo utilizó el mismo enfoque experimental que utilizaron para observar las interacciones de dos fotones. El proceso comienza con el enfriamiento de una nube de átomos de rubidio a temperaturas ultrafrías, solo una millonésima parte de un grado por encima del cero absoluto. Al enfriar los átomos, los ralentiza hasta casi detenerlos. A través de esta nube de átomos inmovilizados, los investigadores luego brillan con un rayo láser muy débil, tan débiles, de hecho, que solo un puñado de fotones viajan a través de la nube en cualquier momento.

Luego, los investigadores miden los fotones a medida que salen del otro lado de la nube atómica. En el nuevo experimento, descubrieron que los fotones fluían como pares y trillizos, en lugar de salir de la nube a intervalos aleatorios, como fotones aislados que no tenían nada que ver entre sí.

Además de rastrear el número y la velocidad de los fotones, el equipo midió la fase de los fotones, antes y después de viajar a través de la nube atómica. La fase de un fotón indica su frecuencia de oscilación.

"La fase te dice qué tan fuertemente están interactuando, y cuanto mayor es la fase, más fuertes están unidos", explica Venkatramani. El equipo observó que cuando las partículas de tres fotones salían de la nube atómica simultáneamente, su fase se desplazaba en comparación con la que tenían cuando los fotones no interactuaban, y era tres veces más grande que el desplazamiento de fase de las moléculas de dos fotones. "Esto significa que estos fotones no solo interactúan de forma independiente entre sí, sino que también interactúan de manera conjunta".

Encuentros memorables

Luego, los investigadores desarrollaron una hipótesis para explicar qué pudo haber causado que los fotones interactuaran en primer lugar. Su modelo, basado en principios físicos, presenta el siguiente escenario: cuando un fotón se mueve a través de la nube de átomos de rubidio, aterriza brevemente en un átomo cercano antes de saltar a otro átomo, como una abeja revoloteando entre flores, hasta que alcanza el Otro final.

Si otro fotón viaja simultáneamente a través de la nube, también puede pasar un tiempo en un átomo de rubidio, formando un polaritón, un híbrido que es parte del fotón, parte del átomo. Entonces, dos polaritones pueden interactuar entre sí a través de su componente atómico. En el borde de la nube, los átomos permanecen donde están, mientras que los fotones salen, aún unidos. Los investigadores encontraron que este mismo fenómeno puede ocurrir con tres fotones, formando un vínculo aún más fuerte que las interacciones entre dos fotones.

"Lo que fue interesante fue que estos trillizos se formaron en absoluto", dice Vuletic. "Tampoco se sabía si tendrían un límite igual, menor o más fuerte en comparación con los pares de fotones".

Toda la interacción dentro de la nube atómica ocurre más de una millonésima de segundo. Y es esta interacción la que hace que los fotones permanezcan unidos, incluso después de que abandonaron la nube.

"Lo bueno de esto es que, cuando los fotones pasan por el medio, cualquier cosa que ocurra en el medio, 'recuerdan' cuando salen", dice Cantu.

Esto significa que los fotones que han interactuado entre sí, en este caso a través de una atracción entre ellos, pueden considerarse fuertemente correlacionados o enredados, una propiedad clave para cualquier bit de computación cuántica.

"Los fotones pueden viajar muy rápido a largas distancias, y las personas han estado usando la luz para transmitir información, como en fibras ópticas", dice Vuletic. "Si los fotones pueden influenciarse entre sí, entonces si puedes enredar estos fotones, y lo hemos hecho, puedes usarlos para distribuir información cuántica de una manera interesante y útil".

En el futuro, el equipo buscará la forma de forzar otras interacciones, como la repulsión, donde los fotones pueden diseminarse unos a otros como bolas de billar.

"Es completamente novedoso en el sentido de que ni siquiera sabemos a veces cualitativamente qué esperar", dice Vuletic. "Con la repulsión de los fotones, ¿pueden ser tales que forman un patrón regular, como un cristal de luz? ¿O algo más sucederá? Es territorio muy desconocido ".

Esta investigación fue apoyada en parte por la National Science Foundation.

Publicación: Qi-Yu Liang, et al., "Observación de estados unidos a tres fotones en un medio cuántico no lineal", Science, 16 de febrero de 2018: vol. 359, Issue 6377, pp. 783-786; DOI: 10.1126 / science.aao7293

Fuente: Jennifer Chu, Oficina de Noticias del MIT

With a little help from Google Translate for Business

0No hay comentarios