Check the new version here

Popular channels

7 Curiosdiades del universo cuántico

7: Coherencia cuántica


Este importante concepto de la mecánica cuántica tiene estrecha relación con la equivalencia materia-energía, corpúsculo-onda, discontinuidad-continuidad, localidad-no-localidad (o campo), etc. La conversión bidireccional entre cada uno de estos dos aspectos del sustrato que constituye el universo explica el nacimiento de los cuerpos desde el big bang (dirección energía a corpúsculo) y la conversión de la materia en campo físico o energía (dirección corpúsculo a campo). El estado de “coherencia cuántica” designa aquella situación física en que las partículas pierden su individualidad entrando en estados campales de vibración unitaria indiferenciada en espacio-tiempos definidos. Es lo que se descubrió ya en los condensados Bose-Einstein.

6: Materia que aparece y se va


La ciencia a derteminado por ahora que, la materia que conforma el universo puede aparecer sin más, simplemente estar ahi, como desaparecer en un segudo ¿Por qué?

5: Estados de superposición cuántica


Esta nueva propiedad conocida en la mecánica cuántica afecta a todo tipo de materia, fermiónica o bosónica; aunque esta última, por ser más libre y oscilante, tenga quizá una mayor facilidad ontológica a estar en estados de superposición. Superposición quiere decir que una misma partícula, o un estado cuántico, puede estar indeterminado, es decir, como flotando sin definición en relación a diferentes valores de una variable o propiedad de ese sistema: por ello se dice que un sistema en superposición está al mismo tiempo en muchos estados (porque son posibles) y en ninguno (porque no se ha comprometido con ninguno). Cuando, por ejemplo, una partícula en superposición se realiza “eligiendo” uno de sus estados posibles se produce el “colapso” de la función de onda de esa partícula. Así un electrón, por ejemplo, está en su orbital vibrando en estado de superposición, de tal manera que cuando se corpusculariza en una posición definida se ha producido el colapso de su función de onda. Un sistema en coherencia cuántica podría también estar en estado de superposición, produciéndose en ciertas circunstancias su colapso en una vibración concreta de todo el sistema


4: Los agujeros Negros no son negros


Valga la redundancia.Que los agujeros negros no son negros en lo absoluto no solo resulta una rareza sino una afirmación ilógica. Y aun así, es cierta. Los agujeros negros son oscuros pero no negros, pues emiten una luz llamada Radiación de Hawking. Eventualmente, el agujero irá perdiendo su masa y su energía hasta desaparecer

3:La observación del humano


A lo largo de los años, los científicos han llegado a una conclusión muy interesante en relación con las partículas: la observación humana de estos eventos, de cierto modo, obliga al propio universo a tomar un camino. En el ejemplo anterior, cuando se realiza una medición, el electrón asume una de las dos aberturas. En el famoso experimento de Schrödinger, el gato está vivo-muerto mientras no abrimos la caja, pero al hacerlo, aparece una de las dos variantes. Es algo extraño, confuso, pero que señala una relación indisoluble entre el conocimiento humano y su percepción


2:¿Dónde están las partículas?


Otra cosa extraña es que nunca podemos saber con exactitud dónde se encuentra una partícula y cuál es su velocidad en un mismo instante de tiempo. Ello significa que si conocemos a qué velocidad va esa partícula no podemos localizarla, en cambio, si sabemos dónde se encuentra, no sabremos cuán rápido se está desplazando

1. Ubicuidad de las partículas


La ubicuidad de las partículas es una de las mayores rarezas del universo cuántico. Una partícula puede estar en dos lugares al mismo tiempo y eso, definitivamente, desafía nuestra lógica cartesiana. En efecto, los experimentos prueban que, antes de ser medido, un electrón que es colocado ante una placa con dos aberturas no atraviesa una u otra, sino ambas entradas
0
0
0
0No comments yet