About Taringa!

Popular channels

ecuaciones matematicas (Info)

Historia de las ecuaciones diferenciales
Una ecuación es una igualdad condicional que se cumple sólo para las soluciones de la misma. Así, en una ecuación algebraica como x – 2 = 0, la igualdad sólo se cumple para x = 2.
En forma similar, una ecuación diferencial, constituida por funciones y sus derivadas, es una igualdad que se cumple sólo para las funciones que son soluciones de la misma. Así, si tenemos f(x) = f’(x), la solución será la función exponencial “e elevado a la x”, ya que es la única función cuya derivada es igual a la función misma.



Matemáticos que hicieron aportes a la Teoría de las Ecuaciones Diferenciales

Niels Abel
El matemático noruego Niels Henrik Abel (1802-1829) hizo aportes en ecuaciones integrales, funciones elípticas, álgebra (probó que las ecuaciones polinómicas de quinto grado no tienen soluciones exactas. Identidad de Abel
Daniel Bernoulli
El suizo Daniel Bernoulli (1700-1792) hace aportes en dinámica de fluidos (principio de Bernoulli), probabilidad, mecánica (incluyendo el problema de la cuerda vibrante).
Jacques Bernoulli
Jacques Bernoulli (1654-1705), suizo, hace aportes a la mecánica, geometría, astronomía, probabilidad, cálculo de variaciones y problemas de la braquistócrona. La ecuación de Bernoulli fue propuesta por él en 1695 pero resuelta independientemente por Leibniz y su hermano Jean. Cadena colgante (catenaria)
Jean Bernoulli
Jean Bernoulli (1667-1748), matemático suizo, resuelve problemas de trayectorias ortogonales en 1698, mecánica, problema tautócrono; propuso y resolvió el problema de la baquistrócona (también resuelto por su hermano Jacques). Introdujo la idea del factor integrante.
Friedrich Bessel
Friedrich Wilhelm Bessel (1784-1846), alemán, hace aportes en astronomía, calculó la órbita del cometa Halley; introdujo las funciones de Bessel y en 1817 estudió el trabajo de Kepler.
Augustin Cauchy
El francés Augustin Louis Cauchy (1789-1857) hace aportes en cálculo de probabilidades, cálculo de variaciones, óptica, astronomía, mecánica, elasticidad, análisis matemático. Creó la teoría de variable compleja (1820) y aplicó su teoría a las ecuaciones diferenciales.
Pafnuti Chebyshev
El ruso Pafnuti Liwovich Chebyshev (1821-1894) trabaja en teoría de números (números primos), probabilidad, funciones ortogonales, polinomios de Chebyshev.
Alexis Clairaut
El francés Alexis Claude Clairaut (1713-1765) hace aportes a la geometría, establece la ecuación de Clairaut y soluciones singulares (1734), astronomía, el problema de los 3 cuerpos, calculó con precisión (1759) el perihelio del cometa Halley.
Jean D’Alembert
El francés Jean le Rond D’Alembert (1717-1783) hace aportes a la mecánica incluyendo el problema de la cuerda vibrante. Dinámica de fluidos, ecuaciones diferenciales parciales.
Peter Dirchlet
Peter Gustav Lejeune Dirichlet (1805-1859), alemán, hace aportes en teoría de números, mecánica de fluidos, análisis matemático; estableció condiciones para la convergencia de las series de Fourier.
Leonhard Euler
Leonhard Euler (1707-1783), suizo, fue el más prolífico de los matemáticos del siglo XVIII a pesar de sus impedimentos físicos (perdió un ojo en 1735 y quedó totalmente ciego en 1768), hace aportes a la mecánica, análisis matemático, teoría de números, geometría, dinámica de fluidos, astronomía, óptica, desarrolló (1739) la teoría de las ecuaciones diferenciales lineales, identidades de Euler, inventó la función gamma.
Joseph Fourier
El francés Jean Baptiste Joseph Fourier (1768-1830) descubre las series de Fourier en las investigaciones sobre el flujo de calor en 1822; acompañó a Napoleón en la campaña de Egipto (1798).
Ferdinand Frobenius
El alemán Ferdinand George Frobenius (1849-1917) estudia los métodos de series para resolver ecuaciones diferenciales; aportes en álgebra y teoría de grupos.
Karl Gauss
El alemán Karl Friedrich Gauss (1777-1855) fue uno de los grandes matemáticos del siglo XIX. Hace aportes a la teoría de números, astronomía, electricidad y magnetismo, óptica, geometría, ecuación hipergeométrica.
George Green
El inglés George Green (1793-1841) hace aportes a la física matemática, óptica, electricidad y magnetismo, originó el término “potencial”, función de Green.
Oliver Heaviside
El inglés Oliver Heaviside (1850-1925) hace aportes al electromagnetismo, sugirió la presencia de la capa atmosférica ahora llamada ionosfera; métodos operacionales no rigurosos para resolver ecuaciones diferenciales.
Charles Hermite
El francés Charles Hermite (1822-1901) estudia la teoría de números, prueba (1873) la trascendencia de e, funciones elípticas, álgebra, polinomios de Hermite.
David Hilbert
Matemático alemán, David Hilbert (1862-1943) hace aportes al álgebra, ecuaciones integrales, cálculo de variaciones, lógica, espacio de Hilbert, propuso muchos problemas, algunos todavía sin solución.
Christian Huygens
Matemático, astrónomo y físico holandés, Christian Huygens (1629-1695) estudia vibraciones, óptica, teoría matemática de ondas. Construye un reloj de péndulo basado en la cicloide (1673), astronomía.
Johannes Kepler
El alemán Johannes Kepler (1571-1630) hace aportes a la geometría, especialmente encontrando áreas que ayudaron a la formulación de sus 3 leyes del movimiento planetario.
Joseph Lagrange
El francés Joseph Louis Lagrange (1736-1813) fue uno de los grandes matemáticos del siglo XVIII. Establece la mecánica analítica, incluyendo el problema de los 3 cuerpos, acústica, cálculo de variaciones, teoría de números, método de variación de parámetros (1774), ecuación adjunta, álgebra (teoría de grupos), ecuaciones diferenciales parciales.
Edmond Laguerre
El francés Edmond Laguerre (1834-1886) hace aportes al análisis matemático, variable compleja, funciones analíticas, polinomios de Laguerre.
Pierre de Laplace
El francés Pierre Simón de Laplace (1749-1827) hace aportes a la mecánica, astronomía, ecuaciones diferenciales parciales, ecuación de Laplace descubierta alrededor de 1787, probabilidad.
Adrien Legendre
El francés Adrien Marie Legendre (1752-1833) hace aportes en teoría de números, funciones elípticas, astronomía, geometría, funciones de Legendre.
Gottfried Leibniz
El alemán Gottfried Wilhelm Leibniz (1646-1716) fue el codescubridor, con Newton, del cálculo. Análisis matemático, lógica, filosofía, regla de Leibniz, primero en resolver ecuaciones diferenciales de primer orden, separables, homogéneas y lineales.
Joseph Liouville
El francés Joseph Liouville (1809-1882) estudia la teoría de números (números trascendentes), variable compleja, problemas de Sturm-Liouville. Ecuaciones integrales.
Isaac Newton
El inglés Isaac Newton (1642-1727) fue codescubridor del cálculo junto a Leibniz. Hace aportes a la mecánica, leyes del movimiento y ley de gravitación universal, flujo de calor, óptica,análisis matemático, métodos de series para resolver ecuaciones diferenciales (1671).
Marc Parseval
El francés Marc Antoine Parseval (1755-1836) hace aportes al análisis matemático, identidad de Parseval en conexión con la teoría de las series de Fourier.
Charles Picard
El francés Charles Émile Picard (1856-1941) hace aportes a la geometría algebraica, topología, variable compleja, método de Picard y teoremas de existencia-unicidad para ecuaciones diferenciales.
Henri Poincaré
El francés Jules Henri Poincaré (1858-1912) hace aportes a las ecuaciones diferenciales no lineales y estabilidad; topología, mecánica celeste incluyendo el problema de los 3 cuerpos, geometría no euclideana, filosofía de la ciencia.
Simeón Poisson
El francés Simeón Denis Poisson (1781-1840) fue un físico matemático que hace aportes a la electricidad y el magnetismo, ecuación de Poisson, fórmula de Poisson, probabilidad, cálculo de variaciones, astronomía.
Jacopo Riccati
El italiano Jacopo Francesco Riccati (1676-1754) hace aportes al análisis matemático, ecuación de Riccati resuelta en 1723 por Daniel Bernoulli y otros miembros más jóvenes de su familia.
Bernhard Riemann
El alemán Georg Friedrich Bernhard Riemann (1826-1866) fue uno de los más grandes matemáticos del siglo XIX (alumno de Gauss, Jacobi y Dirichlet). Variable compleja, geometría no euclideana, funciones elípticas, ecuaciones diferenciales parciales.
Olinde Rodríguez
Matemático francés, Olinde Rodríguez (1794-1851) hace aportes al análisis matemático, fórmula de Rodríguez.
Hermann Schwarz
El alemán Hermann Amandus Schwarz (1843-1921) estudia cálculo de variaciones, teoremas de existencia para ecuaciones diferenciales parciales, desigualdad de Schwarz.
Jacques Sturm
El suizo Jacques Charles François Sturm hace aportes al álgebra (número de raíces reales de ecuaciones algebraicas), geometría, mecánica de fluidos, acústica, problemas de Sturm-Liouville.
Brook Taylor
El inglés Brook Taylor (1685-1731) hace aportes al análisis matemático, método de series de Taylor, soluciones singulares, vibraciones de resortes, movimiento de proyectiles, óptica.
Hoene Wronski
Matemático polaco, Josef Hoene-Wronski (1778-1853) estudia determinantes, introduce el wronskiano, filosofía.1


La incógnita de los algebristas

Una incógnita posee las mismas propiedades algebraicas que los objetos matemáticos a los que representa, de este modo, es posible sumar x con x -por ejemplo- para obtener 2x. De manera totalmente general, las operaciones aplicables a los posibles valores de la incógnita, son válidas en la manipulación de la propia incógnita. Es cuando se opera de este modo que se puede hablar verdaderamente de «incógnita» en el sentido matemático del término. Por otra parte, la incógnita puede designar simplemente un valor que se quiere determinar, una solución a un problema dado, como puede ser un número, una figura geométrica, etc.
Algunos historiadores de las matemáticas consideran que el término «incógnita», en el sentido matemático, se aplica únicamente si ésta posee un mínimo de propiedades matemáticas. Este sentido más preciso permite definir los orígenes de una rama de las matemáticas llamada álgebra.
«El término de álgebra, en una época en que la investigación sobre la incógnita aún no es explícita, y menos el estudio de "ecuaciones", debe ser utilizado con prudencia.»4
Para una ecuación escrita en la forma general: f(x)=g(x) («una igualdad entre dos expresiones matemáticas que se verifica para ciertos valores de la variable llamada incógnita»),5 la incógnita x es una variable. Las ecuaciones polinomiales con una incógnita se escriben como igualdades entre términos, utilizando únicamente las operaciones de adición y multiplicación. La resolución de ecuaciones polinómicas, o algebraicas, juega un papel importante en el nacimiento y posterior desarrollo del álgebra. La rama de las matemáticas que las estudia es la teoría de ecuaciones.
Historia



El papiro Rhind es uno de los textos matemáticos más antiguos conocidos, se encuentra el término aha que se traduce por incógnita.
Tan lejos como se remontan los textos matemáticos, se encuentra el uso de la incógnita, en el sentido de un valor que se busca y que se desconoce. Así por ejemplo, en un viejo papiro egipcio, el papiro Rhind, incógnita se denomina aha6 y el método de resolución es el de la regla falsa. La matemática babilónica hace uso de valores desconocidos inicialmente y que se busca establecer, y que verifican ciertas características. Las tablillas babilónicas que se conservan no son lo suficientemente explícitas para dejar saber si el método de resolución es geométrico o no, y nada hace pensar en una formalización de la incógnita.
Esta concepción de la incógnita no es considerada por los historiadores de las matemáticas como «la incógnita en el sentido matemático del término», sino que designa aquí una palabra del lenguaje corriente, corresponde al valor desconocido de la cuestión a resolver y que se vuelve conocido una vez resuelto el problema. Un formalismo matemático asociado a la definición misma de lo que se considera hoy en día como álgebra es indispensable para comprender la historia del concepto. Este tratamiento formal no se encuentra ni en las matemáticas egipcias ni babilónicas, ni tampoco en la época de Euclides con los griegos.
El método de la regla falsa o la resolución geométrica para la búsqueda del área de una superficie con un perímetro dado, son ejemplos de métodos que no utilizan la incógnita matemática, si bien revelan lo que es en principio desconocido en un problema dado.
Los trabajos de Diofanto


En su Arithmetica, Diofanto detalla las propiedades del arithme, el ancestro de la incógnita tal y como ha sido formalizada.
Los historiadores ubican el origen del concepto de incógnita,7 en el sentido matemático del término, dentro de la obra de Diofanto (siglo III), más de 2000 años después de la redacción del papiro de Rhind. Su incógnita se llama arithme, y la simboliza con la letra S.
«El número que posee una cantidad indeterminada de unidades se llama el arithme, y su marca distintiva es S.»7
Diofanto elabora un ancestro de lenguaje simbólico,8 así Sιβ significa 12*x, pues ι simboliza 10, β 2 y S la incógnita (en notación moderna: x). No es tanto la existencia de un lenguaje pre-simbólico lo que hace que se le atribuya a Diofanto el descubrimiento de la incógnita en sentido matemático, sino más bien las propiedades que le otorga. En la introducción de su libro intitulado Arithmetica, Diofanto precisa las reglas algebraicas, es decir que indica como adicionar, sustraer, multiplicar y dividir expresiones que contienen su arithme:
«Así, por el arithme, diremos el inverso del arithme, para su potencia, diremos el inverso del cuadrado.»9
«El inverso del arithme multiplicado por el bicuadrado del arithme es igual al cubo del arithme.»10
Lo que significa en lenguaje moderno que 1/x multiplicado por x4 es igual a x3.
El principio de balanceo, es decir el hecho de poder agregar o quitar de ambos lados de una igualdad una misma expresión es desarrollado:
«Es de utilidad que aquél que aborde este tratado sea diestro en la adición, sustracción y multiplicación de especies, en la manera de agregar especies positivas y negativas con coeficientes diferentes a otras especies que son ellas mismas positivas, o negativas y positivas; y en fin, en la manera de quitar especies positivas y otras negativas, de otras especies ya sean positivas, o positivas y negativas. Luego, si resulta de un problema que ciertas expresiones son iguales a expresiones idénticas, pero con coeficientes diferentes, habrá que quitar de un lado y de otro las iguales de iguales, hasta obtener una sola especie igual a una sola especie.»11
Estos principios son los primeros que enseñan el manejo de la incógnita, definida en sentido matemático. L. Radfort lo expresa del siguiente modo:
«Esta resolución nos permite ver que con Diofanto estamos en presencia de un cambio conceptual en la manera de abordar ciertos problemas matemáticos. Una cantidad desconocida es puesta en escena y esta cantidad, el arithme, va a ser tomada en cuenta en los cálculos: se va a operar con ella.»12
El aporte de la civilización árabe


Primera página del Compendio de cálculo por compleción y comparación.
La matemática en el islam medieval se ocupa activamente de la resolución de ecuaciones algebraicas. Herederos a la vez de las matemáticas indias y griegas, los matemáticos árabes no tienen las mismas reticencias que los helenos para con los irracionales. Los matemáticos indios trabajaban desde hacía tiempo con la raíz cuadrada y ecuaciones de segundo grado con soluciones no racionales. Desde el siglo VIII los Elementos de Euclides se tradujeron al árabe13 así como los trabajos del matemático indio Brahmagupta.14
En esta época, Al-Juarismi retoma en el libro II de los Elementos de Euclides la parte que trata sobre problemas de segundo grado, modificándola profundamente. El formalismo no es ya geométrico ni el de una pregunta o una lista de preguntas a responder, a la manera de los babilonios o de Diofanto, sino la resolución de una ecuación expresada directamente con una incógnita. Su libro Compendio de cálculo por compleción y comparación comporta un título que describe el método de balanceo mencionado: en una ecuación, se puede agregar el mismo término en ambos lados de la igualdad, principio llamado al-jabr; o quitarle, lo que él llama al-muqābala. Este libro trata todas las ecuaciones de grado dos, es considerado por esto: «el nacimiento de una teoría de las ecuaciones cuadráticas, en el conjunto de los números positivos (casi siempre racionales)».15
Con respecto al libro de Diofanto, hay algunos retrocesos, así como algunos avances. El verdadero progreso reside en el hecho de que el alcance de la incógnita ya no se limita a los números racionales, aún si los coeficientes de la ecuación son casi siempre racionales.15 En revancha, Al-Juarismi no desarrolla casi ningún lenguaje simbólico; su aporte esencial consiste en simbolizar la incógnita con una letra16 y en introducir una notación posicional de los números indios. Esta falta no impide la definición de un concepto riguroso, pero vuelve más complejo el manejo de la incógnita. Además, la incógnita (que Al-Juarismi llama shay' y que significa la cosa que se busca) no se diferencia de la noción de solución, el valor oculto que se busca (que él llama gizr, lo que se traduce como raíz).
Sus lagunas son poco a poco llenadas por sus sucesores. Abu Kamil, su discípulo, generaliza el estudio de ecuaciones a aquellas con coeficientes racionales.17 Al-Karaji desarrolla una aritmética de la incógnita, que prefigura nuestra álgebra de polinomios.18 Su obra es continuada y desarrollada por Al-Samaw'al, quien introduce una notación de polinomios como tablas de sus coeficientes, mucho más operacional que la de sus predecesores.19 La escritura simbólica se desarrolla, Al-Karaji utiliza símbolos para describir las potencias de la incógnita, el símbolo > puesto sobre un número significa la raíz cuadrada y un signo parecido a la J designa el signo igual.16
El aporte de la civilización árabe no ahonda demasiado sobre la formalización de la incógnita (Diofanto disponía ya de un concepto bastante operacional), pero sí sobre su dominio de aplicación, que se convertirá en lo que históricamente se denomina la teoría de ecuaciones, y sobre todo logra establecer un medio sintáctico más rico, con una notación decimal y una mayor riqueza de símbolos, permitiendo un manejo más simple de la incógnita. La escritura del álgebra en texto fue sin embargo predominante.20
Asimilación europea
Europa descubre los trabajos de los matemáticos árabes mucho antes que los de Diofanto. En el siglo XII el texto de Al-Juarismi es traducido al latín por Robert de Chester y después por Gerardo de Cremona.7 Algunas palabras de nuestro vocabulario conexas a la noción de incógnita provienen del árabe. El término álgebra es una traducción de al-jabr de Al-Juarismi, la palabra raíz es una traducción de gizr' del mismo autor.
Si el concepto de incógnita, para una ecuación algebraica, es formalizado esencialmente de la misma manera en Europa que con los árabes, el desarrollo de un lenguaje simbólico más rico y conciso, por Viète, Fermat y Descartes, le dió un poder operacional más vasto y permitió extender la teoría de ecuaciones.
0No comments yet