About Taringa!

Popular channels

genoma humano

El genoma humano es el genoma de Homo sapiens, se localiza en el núcleo celular y está compuesto por 24 cromosomas distintos (22 autosomas + 2 cromosomas sexuales: X, Y) con un tamaño total aproximado de 3200 millones de pares de bases de ADN (3200 Mb) que contienen unos 20.000-25.000 genes . De las 3200 Mb unas 2950 Mb corresponden a eucromatina y unas 250 Mb a heterocromatina. El Proyecto Genoma Humano produjo una secuencia de referencia del genoma humano eucromático, usado en todo el mundo en las ciencias biomédicas.

La secuencia de ADN que conforma el genoma humano contiene codificada la información necesaria para la expresión, altamente coordinada y adaptable al ambiente, del proteoma humano, es decir, del conjunto de proteínas del ser humano. Las proteínas, y no el ADN, son las biomoléculas efectoras; poseen funciones estructurales, enzimáticas, metabólicas, reguladoras, señalizadoras... organizándose en enormes redes funcionales de interacciones. En definitiva, el proteoma fundamenta la particular morfología y funcionalidad de cada célula. Asimismo la organización estructural y funcional de las distintas células conforma cada tejido, cada órgano, y finalmente el organismo vivo en su conjunto. Así, el genoma humano contiene la información necesaria para el desarrollo básico de un ser humano completo.

El genoma humano presenta una densidad de genes muy inferior a la que inicialmente se había predicho, con sólo en torno al 1,5% de su longitud compuesta por exones codificantes de proteínas. Un 70% está compuesto por ADN extragénico y un 30 % por secuencias relacionadas con genes. Del total de ADN extragénico aproximadamente un 70% corresponde a repeticiones dispersas, de manera que aproximadamente la mitad del genoma humano corresponde a secuencias repetitivas de ADN. Por su parte, del total de ADN relacionado con genes se estima que el 95% corresponde a ADN no codificante: pseudogenes, fragmentos de genes, intrones, secuencias UTR...



Componentes

Cromosomas

El genoma humano (como el de cualquier organismo eucariota) está formado por cromosomas, que son largas secuencias continuas de ADN altamente organizadas espacialmente (con ayuda de proteínas histónicas y no histónicas) para adoptar una forma ultracondensada en metafase. Son observables con microscopía óptica convencional o de fluorescencia mediante técnicas de citogenética y se ordenan formando un cariotipo.

El cariotipo humano contiene un total de 24 cromosomas distintos: 22 autosomas más 2 cromosomas sexuales que determinan el sexo del individuo. Los cromosomas 1-22 fueron numerados en orden decreciente de tamaño en base al cariotipo. Sin embargo, posteriormente pudo comprobarse que el cromosoma 22 es en realidad mayor que el 21.

Las células somáticas de un organismo poseen un total de 46 cromosomas, una dotación de 22 autosomas procedentes de cada progenitor y un par de cromosomas sexuales, un cromosoma X de la madre y un X o un Y del padre.

ADN intragénico

Genes

Un gen es la unidad básica de la herencia, y porta la información genética necesaria para la síntesis de una proteína (genes codificantes) o de un ARN no codificante (genes de ARN). Está formado por una secuencia promotora, que regula su expresión, y una secuencia que se transcribe, compuesta a su vez por: secuencias UTR (regiones flanqueantes no traducidas), necesarias para la traducción y la estabilidad del ARNm, exones (codificantes) e intrones, que son secuencias de ADN no traducidas situadas entre dos exones que serán eliminadas en el procesamiento del ARNm (ayuste).
Actualmente se estima que el genoma humano contiene entre 20.000 y 25.000 genes codificantes de proteínas, estimación muy inferior a las predicciones iniciales que hablaban de unos 100.000 genes o más. Esto implica que el genoma humano tiene menos del doble de genes que organismos eucariotas mucho más simples, como la mosca de la fruta o el nematodo Caenorhabditis elegans. Sin embargo, las células humanas recurren ampliamente al splicing (ayuste) alternativo para producir varias proteínas distintas a partir de un mismo gen, como consecuencia de lo cual el proteoma humano es más amplio que el de otros organismos mucho más simples. En la práctica, el genoma tan sólo porta la información necesaria para una expresión perfectamente coordinada y regulada del conjunto de proteínas que conforman el proteoma, siendo éste el encargado de ejecutar la mayor parte de las funciones celulares.



Genes de ARN

Además de los genes codificantes de proteínas, el genoma humano contiene varios miles de genes ARN, cuya transcripción produce ARN de transferencia (ARNt), ARN ribosómico (ARNr), microARN (miARN), u otros genes ARN no codificantes. Los ARN ribosomales y de transferencia son esenciales en la constitución de los ribosomas y en la traducción de las proteínas. Por su parte, los microARN tienen gran importancia en la regulación de la expresión génica, estimándose que hasta un 20-30% de los genes del genoma humano puede estar regulado por el mecanismo de interferencia por miARN. Hasta el momento se han identificado más de 300 genes de miARN y se estima que pueden existir unos 500.

Distribución de genes

A continuación se muestran algunos valores promedio del genoma humano. Cabe advertir, sin embargo, que la enorme heterogeneidad que presentan estas variables hace poco representativos a los valores promedio, aunque tienen valor orientativo.

La densidad media de genes es de 1 gen cada 100 kb, con un tamaño medio de 20-30 kb, y un número de exones promedio de 7-8 por cada gen, con un tamaño medio de 150 nucleótidos. El tamaño medio de un ARNm es de 1,8-2,2 kb, incluyendo las regiones UTR (regiones no traducidas flanqueantes), siendo la longitud media de la región codificante de 1,4 kb.
El genoma humano se caracteriza por presentar una gran heterogeneidad en su secuencia. En particular, la riqueza en bases de guanina (G) y citosina (C) frente a las de adenina (A) y timina (T) se distribuye heterogéneamente, con regiones muy ricas en G+C flanqueadas por regiones muy pobres, siendo el contenido medio de G+C del 41%, menor al teóricamente esperado (50%). Dicha heterogeneidad esta correlacionada con la riqueza en genes, de manera que los genes tienden a concentrarse en las regiones más ricas en G+C. Este hecho era conocido ya desde hace años gracias a la separación mediante centrifugación en gradiente de densidad de regiones ricas en G+C (que recibieron el nombre de isócoros H; del inglés High) y regiones ricas en A+T (isócoros L; del inglés Low).




Secuencias reguladoras

El genoma humano tiene diversos sistemas de regulación de la expresión génica, basados en la regulación de la unión de factores de transcripción a las secuencias promotoras, en mecanismos de modificación epigenética (metilación del ADN o metilación-acetilación de histonas) o en el control de la accesibilidad a los promotores determinada por el grado de condensación de la cromatina; todos ellos muy interrelacionados. Además hay otros sistemas de regulación a nivel del procesamiento, estabilidad y traducción del ARNm, entre otros. Por lo tanto, la expresión génica está intensamente regulada, lo cual permite desarrollar los múltiples fenotipos que caracterizan los distintos tipos celulares de un organismo eucariota multicelular, al mismo tiempo que dota a la célula de la plasticidad necesaria para adaptarse a un medio cambiante. No obstante, toda la información necesaria para la regulación de la expresión génica, en función del ambiente celular, está codificada en la secuencia de ADN al igual que lo están los genes.

Las secuencias reguladoras son típicamente secuencias cortas presentes en las proximidades o en el interior (frecuentemente en intrones) de los genes. En la actualidad, el conocimiento sistemático de estas secuencias y de cómo actúan en complejas redes de regulación génica, sensibles a señales exógenas, es muy escaso y está comenzando a desarrollarse mediante estudios de genómica comparada, bioinformática y biología de sistemas. La identificación de secuencias reguladoras se basa en parte en la búsqueda de regiones no codificantes evolutivamente conservadas. Por ejemplo, la divergencia evolutiva entre el ratón y el ser humano ocurrió hace 70-90 millones de años.. Mediante estudios de genómica comparada, alineando secuencias de ambos genomas pueden identificarse regiones con alto grado de coincidencia, muchas correspondientes a genes y otras a secuencias no codificantes de proteínas pero de gran importancia funcional, dado que han estado sometidas a presión selectiva.

Elementos ultraconservados

Reciben este nombre regiones que han mostrado una constancia evolutiva casi total, mayor incluso que las secuencias codificantes de proteínas, mediante estudios de genómica comparada. Estas secuencias generalmente se solapan con intrones de genes implicados en la regulación de la transcripción o en el desarrollo embrionario y con exones de genes relacionados con el procesamiento del ARN. Su función es generalmente poco conocida, pero probablemente de extrema importancia dado su nivel de conservación evolutiva, tal y como se ha expuesto en el punto anterior.

En la actualidad se han encontrado unos 500 segmentos de un tamaño mayor a 200 pares de bases totalmente conservados (100% de coincidencia) entre los genomas de humano, ratón y rata, y casi totalmente conservados en perro (99%) y pollo (95%)

Pseudogenes

En el genoma humano se han encontrado asimismo unos 19.000 pseudogenes, que son versiones completas o parciales de genes que han acumulado diversas mutaciones y que generalmente no se transcriben. Se clasifican en pseudogenes no procesados (~30%) y pseudogenes procesados (~70%)[7] .

* Los pseudogenes no procesados son copias de genes generalmente originadas por duplicación, que no se transcriben por carecer de una secuencia promotora y haber acumulado múltiples mutaciones, algunas de las cuales sin sentido (lo que origina codones de parada prematuros). Se caracterizan por poseer tanto exones como intrones.
* Los pseudogenes procesados, por el contrario, son copias de ARN mensajero retrotranscritas e insertadas en el genoma. En consecuencia carecen de intrones y de secuencia promotora.

ADN intergénico

Como se ha dicho, las regiones intergénicas o extragénicas comprenden la mayor parte de la secuencia del genoma humano, y su función es generalmente desconocida. Buena parte de estas regiones está compuesta por elementos repetitivos, clasificables como repeticiones en tándem o repeticiones dispersas, aunque el resto de la secuencia no responde a un patrón definido y clasificable. Gran parte del ADN intergénico puede ser un artefacto evolutivo sin una función determinada en el genoma actual, por lo que tradicionalmente estas regiones han sido denominadas ADN "basura" (Junk DNA), denominación que incluye también las secuencias intrónicas y pseudogenes. No obstante, esta denominación no es la más acertada dado el papel regulador conocido de muchas de estas secuencias. Además el notable grado de conservación evolutiva de algunas de estas secuencias parece indicar que poseen otras funciones esenciales aún desconocidas o poco conocidas. Por lo tanto, algunos prefieren denominarlo "ADN no codificante" (aunque el llamado "ADN basura" incluye también transposones codificantes) o "ADN repetitivo".

ADN repetido en tándem

Son repeticiones que se ordenan de manera consecutiva, de modo que secuencias idénticas, o casi, se disponen unas detrás de otras.



Satélites

El conjunto de repeticiones en tándem de tipo satélite comprende un total de 250 Mb del genoma humano. Son secuencias de entre 5 y varios cientos de nucleótidos que se repiten en tándem miles de veces generando regiones repetidas con tamaños que oscilan entre 100 kb (100.000 nucleótidos) hasta varias megabases.

Reciben su nombre de las observaciones iniciales de centrifugaciones en gradiente de densidad del ADN genómico fragmentado, que reportaban una banda principal correspondiente a la mayor parte del genoma y tres bandas satélite de menor densidad. Esto se debe a que las secuencias satélite tienen una riqueza en nuclétidos A+T superior a la media del genoma y en consecuencia son menos densas.

Hay principalmente 6 tipos de repeticiones de ADN satélite :

1. Satélite 1: secuencia básica de 42 nucleótidos. Situado en los centrómeros de los cromosomas 3 y 4 y el el brazo corto de los cromosomas acrocéntricos (en posición distal respecto al cluster codificante de ARNr).
2. Satélite 2: la secuencia básica es ATTCCATTCG. Presente en las proximidades de los centrómeros de los cromosomas 2 y 10, y en la constricción secundaria de 1 y 16.
3. Satélite 3: la secuencia básica es ATTCC. Presente en la constricción secundaria de los cromosomas 9 e Y, y en posición proximal respecto al cluster de ADNr del brazo corto de los cromosomas acrocéntricos.
4. Satélite alfa: secuencia básica de 171 nucleótidos. Forma parte del ADN de los centrómeros cromosómicos.
5. Satélite beta: secuencia básica de 68 nucleótidos. Aparece en torno al centrómero en los cromosomas acrocéntricos y en la constricción secundaria del cromosoma 1.
6. Satélite gamma: secuencia básica de 220 nucleótidos. Próximo al centrómero de los cromosomas 8 y X.


Minisatélites

Están compuestas por una unidad básica de secuencia de 6-25 nucleótidos que se repite en tándem generando secuencias de entre 100 y 20.000 pares de bases. Se estima que el genoma humano contiene unos 30.000 minisatélites.

Diversos estudios han relacionado los minisatélites con procesos de regulación de la expresión génica, como el control del nivel de transcripción, el ayuste (splicing) alternativo o la impronta (imprinting). Asimismo, se han asociado con puntos de fragilidad cromosómica dado que se sitúan próximos a lugares preferentes de rotura cromosómica, translocación genética y recombinación meiótica. Por último, algunos minisatélites humanos (~10%) son hipermutables, presentando una tasa media de mutación entre el 0.5% y el 20% en las células de la línea germinal, siendo así las regiones más inestables del genoma humano conocidas hasta la fecha.

En el genoma humano, aproximadamente el 90% de los minisatélites se sitúan en los telómeros de los cromosomas. La secuencia básica de seis nucleótidos TTAGGG se repite miles de veces en tándem, generando regiones de 5-20 kb que conforman los telómeros.

Algunos minisatélites por su gran inestabilidad presentan una notable variabilidad entre individuos distintos. Se consideran polimorfismos multialélicos, dado que pueden presentarse en un número de repeticiones muy variable, y se denominan VNTR (acrónimo de Variable number tandem repeat). Son marcadores muy utilizados en genética forense, ya que permiten establecer una huella genética característica de cada individuo, y son identificables mediante Southern blot e hibridación.

Microsatélites

Están compuestos por secuencias básicas de 2-4 nucleótidos, cuya repetición en tándem origina frecuentemente secuencias de menos de 150 nucleótidos. Algunos ejemplos importantes son el dinucleótido CA y el trinucleótido CAG.

Los microsatélites son también polimorfismos multialélicos, denominados STR (acrónimo de Short Tandem Repeats) y pueden identificarse mediante PCR, de modo rápido y sencillo. Se estima que el genoma humano contiene unos 200.000 microsatélites, que se distribuyen más o menos homogéneamente, al contrario que los minisatélites, lo que los hace más informativos como marcadores.

ADN repetido disperso

Son secuencias de ADN que se repiten de modo disperso por todo el genoma, constituyendo el 45% del genoma humano. Los elementos cuantitativamente más importantes son los LINEs y SINEs, que se distinguen por el tamaño de la unidad repetida.

Estas secuencias tienen la potencialidad de autopropagarse al transcribirse a una ARNm intermediario, retrotranscribirse e insertarse en otro punto del genoma. Este fenómeno se produce con una baja frecuencia, estimándose que 1 de cada 100-200 neonatos portan una inserción nueva de un Alu o un L1, que pueden resultar patogénicos por mutagénesis insercional, por desregulación de la expresión de genes próximos (por los propios promotores de los SINE y LINE) o por recombinación ilegítima entre dos copias idénticas de distinta localización cromosómica (recombinación intra o intercromosómica), especialmente entre elementos Alu.

SINE

Acrónimo del inglés Short Interspersed Nuclear Elements (Elementos nucleares dispersos cortos). Son secuencias cortas, generalmente de unos pocos cientos de bases, que aparecen repetidas miles de veces en el genoma humano. Suponen el 13% del genoma humano, un 10% debido exclusivamente a la familia de elementos Alu (característica de primates).

Los elementos Alu son secuencias de 250-280 nucleótidos presentes en 1.500.000 de copias dispersas por todo el genoma. Estructuralmente son dímeros casí idéticos, excepto que la segunda unidad contiene un inserto de 32 nucleótidos, siendo mayor que la primera. En cuanto a su secuencia, tienen una considerable riqueza en G+C (56%), por lo que predominan en las bandas R, y ambos monómeros presentan una cola poliA (secuencia de adeninas) vestigio de su origen de ARNm. Además poseen un promotor de la ARN polimerasa III para transcribirse. Se consideran retrotransposones no autónomos, ya que dependen para propagarse de la retrotranscripción de su ARNm por una retrotranscriptasa presente en el medio.

LINE

Acrónimo del inglés Long Interspersed Nuclear Elements (Elementos nucleares dispersos largos). Constituyen en 20% del genoma humano. La familia de mayor importancia cuantitativa es LINE-1 o L1 que es una secuencia de 6 kb repetida unas 800.000 veces de modo disperso por todo el genoma, aunque la gran mayoría de las copias es incompleta al presentar el extremo 5' truncado por una retrotranscripción incompleta. Así, se estima que hay unas 5.000 copias completas de L1, sólo 90 de las cuales son activas, estando el resto inhibidas por metilación de su promotor.

Su riqueza en G+C es del 42%, próxima a la media del genoma (41%) y se localizan preferentemente en las bandas G de los cromosomas. Poseen además un promotor de la ARN polimerasa II.

Los elementos LINE completos son codificantes. En concreto LINE-1 codifica dos proteínas:

1. Proteína de unión a ARN (’’RNA-binding protein’’): codificada por el marco de lectura abierto 1 (ORF1, acrónimo del inglés ‘’Open reading Frame 1’’)
2. Enzima con actividad retrotranscriptasa y endonucleasa: codificada por el ORF2.

Por lo tanto, se consideran retrotransopsones autónomos, ya que codifican las proteínas que necesitan para propagarse. La ARN polimerasa II presente en el medio transcribe el LINE, y este ARNm se traduce en ambos marcos de lectura produciendo una retrotranscriptasa que actúa sobre el ARNm generando una copia de ADN del LINE, potencialmente capaz de insertarse en el genoma. Asimismo estas proteínas pueden ser utilizadas por pseudogenes procesados o elementos SINE para su propagación.

Diversos estudios han mostrado que las secuencias LINE pueden tener importancia en la regulación de la expresión génica, habiéndose comprobado que los genes próximos a LINE presentan un nivel de expresión inferior. Esto es especialmente relevante porque aproximadamente el 80% de los genes del genoma humano contiene algún elemento L1 en sus intrones.




HERV

Acrónimo de Human endogenous retrovirus (retrovirus endógenos humanos). Los retrovirus son virus cuyo genoma está compuesto por ARN, capaces de retrotranscribirse e integrar su genoma en el de la célula infectada. Así, los HERV son copias parciales del genoma de retrovirus integrados en el genoma humano a lo largo de la evolución de los vertebrados, vestigios de antiguas infecciones retrovirales que afectaron a células de la línea germinal. Algunas estimaciones establecen que hay unas 98.000[8] secuencias HERV, mientras que otras afirman que son más de 400.000. En cualquier caso, se acepta que en torno al 5-8% del genoma humano está constituído por genomas antiguamente virales. El tamaño de un genoma retroviral completo es de en torno a 6-11 kb, pero la mayoría de los HERV son copias incompletas.

A lo largo de la evolución estas secuencias sin interés para el genoma hospedador han ido acumulando mutaciones sin sentido y deleciones que los han inactivado. Aunque la mayoría de las HERV tienen millones de años de antigüedad, al menos una familia de retrovirus se integró durante la divergencia evolutiva de humanos y chimpancés, la familia HERV-K(HML2), que supone en torno al 1% de los HERV.

Transposones de ADN

Bajo la denominación de transposones a veces se incluyen los retrotransposones, tales como los pseudogenes procesados, los SINEs y los LINEs. En tal caso se habla de transposones de clase I para hacer referencia a los retrotransposones, y de clase II para referirse a transposones de ADN, a los que se dedica el presente apartado.

Los transposones de ADN completos poseen la potencialidad de autopropagarse sin un intermediario de ARNm seguido de retrotranscripción. Un transposón contiene en gen de una enzima transposasa, flanqueado por repeticiones invertidas. Su mecanismo de transposición se basa en cortar y pegar, moviendo su secuencia a otra localización distinta del genoma. Los distintos tipos de transposasas actúan de modo diferente, habiendo algunas capaces de unirse a cualquier parte del genoma mientras que otras se unen a secuencias diana específicas. La transposasa codificada por el propio transposón lo extrae realizando dos cortes flanqueantes en la hebra de ADN, generando extremos cohesivos, y lo inserta en la secuencia diana en otro punto del genoma. Una ADN polimerasa rellena los huecos generados por los extremos cohesivos y una ADN ligasa reestablece los enlaces fosfodiéster, recuperando la continuidad de la secuencia de ADN. Esto conlleva una duplicación de la secuencia diana en torno al transposón, en su nueva localización.

Se estima que el genoma humano contiene unas 300.000 copias de elementos repetidos dispersos originados por transposones de ADN, constituyendo un 3% del genoma. Hay múltiples familias, de las que cabe destacar por su importancia patogénica por la generación de reordenaciones cromosómicas los elementos mariner, así como las familias MER1 y MER2.

Variabilidad

Si bien dos seres humanos del mismo sexo comparten un porcentaje elevadísimo (en torno al 99,9%) de su secuencia de ADN, lo que nos permite trabajar con una única secuencia de referencia, pequeñas variaciones genómicas fundamentan buena parte de la variabilidad fenotípica interindividual. Una variación en el genoma, por sustitución, deleción o inserción, se denomina polimorfismo o alelo genético. No todo polimorfismo genético provoca una alteración en la secuencia de una proteína o de su nivel de expresión, es decir, muchos son silenciosos y carecen de expresión fenotípica.

SNPs

La principal fuente de variabilidad en los genomas de dos seres humanos procede de las variaciones en un sólo nucleótido, conocidas como SNPs (Single nucleotide polimorphisms), en las cuales se han centrado la mayor parte de los estudios. Dada su importancia, en la actualidad existe un proyecto internacional (International HapMap Project) para catalogar a gran escala los SNPs del genoma humano. En este contexto, la denominación de SNP frecuentemente se restringe a aquellos polimorfismos de un sólo nucleótido en los que el alelo menos frecuente aparece en al menos el 1% de la población.

Los SNP son marcadores tetralélicos, dado que en teoría en una posición puede haber cuatro nucleótidos distintos, cada uno de los cuales identificaría un alelo; sin embargo, en la práctica suelen presentar sólo dos alelos en la población. Se estima que la frecuencia de SNPs en el genoma humano es de un SNP cada 500-100 pares de bases, de los que una parte relevante son polimorfismos codificantes, que causan la sustitución de un aminoácido por otro en una proteína.

Gracias a su abundancia y a que presentan una distribución aproximadamente uniforme en el genoma, han tenido gran utilidad como marcadores para los mapas de ligamiento, herramienta fundamental del Proyecto Genoma Humano. Además son fácilmente detectables a gran escala mediante el empleo de chips de ADN (comunmente conocidos como microarrays).

Variación estructural

Recientemente, se ha comenzado a estudiar una nueva forma de variación en el genoma humano: la estructural. Este tipo de variaciones se refiere a duplicaciones, inversiones, inserciones o variantes en el número de copias de segmentos grandes del genoma (por lo general de 1000 nucléotidos o más). Estas variantes implican a una gran proporción del genoma, por lo que se piensa que son, al menos, tan importantes como los SNPs.

A pesar de que este campo de estudio es relativamente nuevo (los primeros estudios a gran escala se publicaron en los años 2004 y 2005), ha tenido un gran auge, hasta el punto de que se ha creado un nuevo proyecto para estudiar este tipo de variantes en los mismos individuos en los que se basó el Proyecto HapMap.

Aunque aún quedan dudas acerca de las causas de este tipo de variantes, cada vez existe más evidencia a favor de que es un fenómeno recurrente que todavía continua moldeando y creando nuevas variantes del genoma.

Este tipo de variaciones han potenciado la idea de que el genoma humano no es una entidad estática, sino que se encuentra en constante cambio y evolución.


referencias

1. ↑ International Human Genome Sequencing Consortium (2004). "Finishing the euchromatic sequence of the human genome.". Nature 431 (7011): 931-45. PMID 15496913.
2. ↑ International Human Genome Sequencing Consortium (2001). "Initial sequencing and analysis of the human genome.". Nature 409 (6822): 860-921. PMID 11237011.
3. ↑ Watson, JD, Baker TA, Bell SP, Gann A, Levine M, Losick R. (2004). “Ch9-10”, Molecular Biology of the Gene, 5th ed., Peason Benjamin Cummings; CSHL Press.
4. ↑ Loots G, Locksley R, Blankespoor C, Wang Z, Miller W, Rubin E, Frazer K (2000). "Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons.". Science 288 (5463): 136-40. PMID 10753117. Summary
5. ↑ Nei M, Xu P, Glazko G (2001). "Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms.". Proc Natl Acad Sci U S A 98 (5): 2497-502. PMID 11226267.
6. ↑ a b c d e f g h i j k l m n ñ o Novo Villaverde, F.J. (2007), Genética Humana, Madrid: Pearson. ISBN 8483223598. (Recomendado)
7. ↑ Torrents D., Suyama M., Zdobnov E. and Bork p. (2003). "A Genome-Wide Survey of Human Pseudogenes.". Genome Research 13 (12): 2559-2567. PMID 14656963.
8. ↑ Robert Belshaw, (2004). "Long-term reinfection of the human genome by endogenous retroviruses" Proc Natl Acad Sci U S A. 2004 April 6; 101(14): 4894–4899
9. ↑ Feuk L., Carson A. R. y Scherer S. W. (2006). "Structural Variation in the human Genome.". Nature Reviews Genetics 7 (2): 85-97. PMID 16418744.
10. ↑ "Human chromosome 2 resulted from a fusion of two ancestral chromosomes that remained separate in the chimpanzee lineage" The Chimpanzee Sequencing and Analysis Consortium (2005). "Initial sequence of the chimpanzee genome and comparison with the human genome.". Nature 437 (7055): 69-87. PMID 16136131.
"Large-scale sequencing of the chimpanzee genome is now imminent."Olson M, Varki A (2003). "Sequencing the chimpanzee genome: insights into human evolution and disease.". Nat Rev Genet 4 (1): 20-8. PMID 12509750.
11. ↑ "Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates." Gilad Y, Wiebe V, Przeworski M, Lancet D, Pääbo S (2004). "Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates.". PLoS Biol 2 (1): E5. PMID 14737185.


espero sea de su agrado

fuente
0No comments yet
      GIF