Check the new version here

Popular channels

Lince!!! te dejo 20 teorías que cambiaron al mundo - Parte 2




Que haces rufianasssooooo!!! Acá te traigo la segunda parte de la lista con las 20 teorías que cambiaron al mundo. Que distrufes el post!!!


Wöhler – Teoría de la química orgánica

El joven químico, alemán Friedrich Wöhler sabía en 1828 qué era exactamente lo que le interesaba: estudiar los metales y minerales. Estas sustancias pertenecían a un campo, la química inorgánica, que se ocupaba de compuestos que supuestamente nada tenían que ver con la vida. Frente a ella estaba la química orgánica, que estudiaba aquellas sustancias químicas que se formaban en los tejidos de las plantas y animales vivos.

El maestro de Wöhler, el químico sueco Jöns J. Berzelius, había dividido la química en estos dos compartimentos y afirmado que las sustancias orgánicas no podían formarse a partir de sustancias inorgánicas en el laboratorio. Sólo podían formarse en los tejidos vivos, porque requerían la presencia de una «fuerza vital».




Faraday – Teoría de los campos magnéticos

Los científicos de principios del siglo XVIII pensaban que el universo entero funcionaba a base de estas fuerzas de contacto: era lo que se llama una visión mecanicista del universo.

¿Podían existir fuerzas sin contacto? Sin duda: una de ellas era la fuerza de gravitación explicada por el propio Newton. La Tierra tiraba de la Luna y la mantenía en su órbita, pero no la tocaba en absoluto. Entre ambos cuerpos no mediaba absolutamente nada, ni siquiera aire; pero aun así, ambas estaban ligadas por la gran fuerza gravitatoria.

Otra clase de fuerza sin contacto cabe observarla si colocamos una barra de hierro vertical perfectamente en equilibrio. Lo único que necesitamos es un pequeño imán. Lo acercamos a la punta superior de la barra y ésta se inclina hacia el imán y cae. El imán no necesita tocar para nada la barra, ni tampoco es es el aire el causante del fenómeno, porque exactamente lo mismo ocurre en el vacío.

El científico inglés Michael Faraday abordó en 1831 el problema de esa misteriosa fuerza. Colocó dos imanes sobre una mesa de madera, con el polo norte de uno mirando hacia el polo sur del otro. Los imanes estaban suficientemente cerca como para atraerse, pero no tanto como para llegar a juntarse; la atracción a esa distancia no era suficiente para superar el rozamiento con la mesa. Faraday sabía, sin embargo, que la fuerza estaba ahí, porque si dejaba caer limaduras de hierro entre los dos imanes, aquéllas se movían hacia los polos y se quedaban pegadas a ellos. Como explicar ese fenómeno invisible y mágico?

Para experimentar usó un papel blanco sobre los imanes y livianas limaduras de hierro, y pudo observar que las mismas se movían sobre el papel y se acomodaban siguiendo líneas muy parecidas en formas de arcos, a las que llamó lineas magnéticas, que a su vez eran generadas por un poder especial, llamado campo magnético.

Hasta entonces la corriente eléctrica sólo se podía obtener con baterías, que son recipientes cerrados en cuyo interior reaccionan ciertas sustancias químicas. La electricidad generada con baterías era bastante cara. El nuevo descubrimiento de Faraday permitía generarla con una máquina de vapor que moviera ciertos objetos a través de líneas magnéticas de fuerza. La electricidad obtenida con estos generadores de vapor era muy barata y podía producirse en grandes cantidades. Cabe decir, pues, que fueron las líneas magnéticas de fuerza las que electrificaron el mundo en el siglo XX.



Joule – Teoría del calor

La capacidad de realizar trabajo se llama «energía». Los objetos en movimiento poseen energía de movimiento o «energía cinética». Una flecha en reposo es casi inofensiva, pero lanzada en rápido movimiento puede perforar la gruesa piel de un animal. Y muchos habrán visto esas demoledoras que pulverizan muros de ladrillo con un enorme péndulo de acero.

Cuando Newton enunció sus leyes del movimiento en los años 80 del siglo XVII, dijo que cualquier objeto en movimiento continuaría moviéndose a la misma velocidad a menos que una fuerza exterior actuara sobre él. Dicho de otro modo, la energía cinética de un objeto tenía que permanecer constante.

Y aquí entra a actuar la idea de Joule, que pensó que el calor debía ser otra forma más de energía, igual que cinética, eléctrica, química, magnética. Por consiguiente, una cantidad dada de energía debería producir siempre la misma cantidad de calor. En 1840, cuando sólo tenía 22 años, comenzó a hacer mediciones muy precisas con el fin de comprobar esa posibilidad.

Luego de tediosos e ingeniosos experimentos, 1847 Joule estaba ya convencido de que una cantidad dada de energía de cualquier tipo producía siempre la misma cantidad de calor. (La energía se puede medir en ergios y el calor en calorías.) Joule demostró que siempre que se consumían unos 41.800.000 ergios de energía de cualquier tipo, se producía 1 caloría.

Esta relación entre energía y calor se denomina «equivalente mecánico del calor». Más tarde se introdujo en honor de Joule otra unidad de energía llamada «joule» o «julio». El julio es igual a 10 millones de ergios, y una caloría equivale a 4'18 julios.



Lavoisier – Teoría de los gases

Cuesta creer que el aire sea realmente algo. No se puede ver y normalmente tampoco se deja sentir; y, sin embargo, está ahí. Cuando cobra suficiente velocidad, sopla un viento huracanado que es capaz de hacer naufragar barcos y tronchar árboles. Su presencia resulta entonces innegable. El aire ¿es la única sustancia invisible?

Por aquella época Van Helmont observó que al echar, por ejemplo, trocitos de plata en un corrosivo muy fuerte llamado ácido nítrico, la plata se disolvía y un vapor rojo borboteaba y dibujaba rizos por encima de la superficie del líquido. ¿Era aquello aire? ¿Quién había visto jamás aire rojo? ¿Quién había oído jamás hablar de un aire que podía verse?

Van Helmont conocía el mito griego según el cual el universo fue en su origen materia tenue e informe que llenaba todo el espacio. Los griegos llamaban a esta materia primigenia “caos”, pero van Helmont que era flamenco escribió la palabra tal y como la pronunciaba: «gas».

Luego de arduas experimentaciones y cuando lograron retener en alguna cámara estanca el gas de las reacciones químicas, se pudieron conocer decenas de nuevos “aires” y el químico francés que hoy no ocupa la atención, Antoine-Laurent Lavoisier estaba enfrascado en el problema de la combustión. La combustión —es decir, el proceso de arder u oxidarse una sustancia en el aire— era algo que nadie terminaba de comprender.

Lavoisier no fue, claro está, el primero en estudiar la combustión; pero tenía una ventaja sobre sus predecesores, y es que creía firmemente que las mediciones precisas eran parte esencial de un experimento. La idea de tomar medidas cuidadosas tampoco era nueva, pues la introdujo doscientos años antes Galileo; pero fue Lavoisier quien la extendió a la química.

Lavoisier tenía, pues, buenas razones para sospechar que detrás de los cambios de peso que se producían en la combustión estaban los gases. Mas ¿cómo probar su sospecha? No bastaba con pesar las cenizas y la herrumbre; había que pesar también los gases, pero como podía hacerlo?

Lavoisier comenzó por pesar con todo cuidado el recipiente estanco, junto con la sustancia sólida y el aire retenido dentro. Luego calentó aquélla enfocando la luz solar por medio de una gran lupa o encendiendo un fuego debajo. Una vez que la sustancia se había quemado o aherrumbrado, volvió a pesar el recipiente junto con su contenido.

El proceso lo repitió con diversas sustancias, y en todos los casos, independientemente de qué fuese lo que se quemara o aherrumbrara, el recipiente sellado no mostró cambios de peso.
Imaginemos, por ejemplo, un trozo de madera reducido a cenizas por combustión. Las cenizas, como es lógico, pesaban menos que la madera, pero la diferencia de peso quedaba compensada por el del gas liberado, de manera que, a fin de cuentas, el peso del recipiente no variaba.

Este es el famoso «principio de conservación de la materia». Y esta idea de que la materia es indestructible ayudó a aceptar, treinta años más tarde, la teoría de que la materia se compone de átomos indestructibles.



Russell – Teoría de la evolución estelar

Aristóteles pensaba que la Tierra y los cielos estaban regidos por leyes diferentes. Allí, según él, reinaba el cambio errático: sol y tormenta, crecimiento y descomposición. Aquí, por el contrario, no había cambio: el Sol, la Luna y los planetas giraban en los cielos de forma tan mecánica que cabía predecir con gran antelación el lugar que ocuparían en cualquier instante, y las estrellas jamás se movían de su sitio.

Había objetos, para qué negarlo, que parecían estrellas fugaces. Pero según Aristóteles no caían de los cielos, eran fenómenos que ocurrían en el aire, y el aire pertenecía a la Tierra. (Hoy sabemos que las estrellas fugaces son partículas más o menos grandes que entran en la atmósfera terrestre desde el espacio exterior. La fricción producida al caer a través de la atmósfera hace que ardan y emitan luz. Así pues, Aristóteles en parte tenía razón y en parte estaba equivocado en el tema de las estrellas fugaces. Erraba al pensar que no venían de los cielos, pero estaba en lo cierto porque realmente se hacen visibles en el aire. Y es curioso que las estrellas fugaces se llaman también «meteoros», palabra que en griego quiere decir «cosas en el aire»).

En el año 134 a. C, dos siglos después de morir Aristóteles, el astrónomo griego Hiparco observó una estrella nueva en la constelación del Escorpión. ¿Qué pensar de aquello? ¿Acaso las estrellas podían «nacer»? ¿Es que, después de todo, los cielos podían cambiar?

Hiparco, en previsión de que su observación no fuese correcta y de que la estrella hubiera estado siempre allí, confeccionó un mapa de más de mil estrellas brillantes, para así ahorrar engaños a todos los futuros astrónomos. Aquel fue el primer mapa estelar, y el mejor durante los mil seiscientos años siguientes. Pero durante siglos no volvieron a registrarse nuevas estrellas.

En el año 1054 d. C. apareció un nuevo astro en la constelación del Toro, que sólo fue observado por los astrónomos chinos y japoneses. La ciencia europea pasaba por momentos bajos, tanto que ningún astrónomo reparó en el nuevo lucero, a pesar de que durante semanas lució con un brillo mayor que el de cualquier otro cuerpo celeste, exceptuando el Sol y la Luna.

En 1572 volvió a surgir un nuevo astro brillante, esta vez en la constelación de Casiopea. Para entonces la ciencia empezaba a florecer de nuevo en Europa, y los astrónomos escrutaban celosamente los cielos. Entre ellos estaba un joven danés llamado Tycho Brahe, quien observó la estrella y escribió sobre ella un libro titulado De Nova Stella («Sobre la nueva estrella»). Desde entonces las estrellas que surgen de pronto en los cielos se llaman «novas».

Ahora no había ya excusa que valiera. Aristóteles estaba confundido: los cielos no eran inmutables.

Más indicios de cambio

Pero la historia no había tocado a su fin. En 1577 apareció un cometa en los cielos y Brahe intentó calcular su distancia a la Tierra. Para ello registró su posición con referencia a las estrellas, desde dos observatorios diferentes momentos y en lo más cercanos posibles. Los observatorios distaban entre sí un buen trecho: el uno estaba en Dinamarca y el otro en Checoslovaquia. Brahe sabía que la posición aparente del cometa tenía que variar al observarlo desde dos lugares distintos. Y cuanto más cerca estuviera de la Tierra, mayor sería la diferencia. Sin embargo, la posición aparente del cometa no variaba para nada, mientras que la de la Luna sí cambiaba. Eso quería decir que el cometa se hallaba a mayor distancia que la Luna y que, pese a su movimiento errático, formaba parte de los cielos.

El astrónomo holandés David Fabricius descubrió algunos años más tarde, en 1596, una estrella peculiar en la constelación de la Ballena. Su brillo no permanecía nunca fijo. Unas veces era muy intenso, mientras que otras se tornaba tan tenue que resultaba invisible. Era una «estrella variable» y representaba otro tipo de cambio. La estrella recibió el nombre de Mira («maravillosa»).

Y aún se observaron más cambios. En 1718, por citar otro ejemplo, el astrónomo inglés Edmund Halley demostró que la posición de algunas estrellas había variado desde tiempos de los griegos.

No cabía la menor duda de que en los cielos había toda clase de cambios. Lo que no estaba claro era si admitían alguna explicación o si sucedían simplemente al azar.

La solución de este problema no fue posible hasta que el físico alemán Gustav R. Kirchhoff inventó el espectroscopio en 1859 . El espectroscopio es un instrumento que descompone en un espectro de colores cualquier luz que incida en él. Cada elemento químico, al emitir luz, tiene un espectro característico. Por eso, el espectroscopio puede identificar los elementos que se hallan presentes en una fuente luminosa y ha sido utilizado para determinar la composición química del Sol y las estrellas.

Cada clase de estrella produce un «espectro luminoso» diferente. Este hecho animó al astrónomo italiano Pietro A. Secchi a dividir en 1867 las estrellas en cuatro «clases espectrales». Otros astrónomos hicieron posteriormente una subdivisión más fina, en diez clases.

Este hallazgo estaba lleno de interés, porque significaba que las estrellas podían clasificarse en grupos de acuerdo con sus propiedades, igual que las plantas y los animales podían agruparse según sus características.

Wilhelm Wien, un físico alemán, demostró en 1893 cómo la luz emitida por cualquier fuente variaba con su temperatura. El trabajo de Wien permitía deducir la temperatura superficial de una estrella a partir simplemente de su clase espectral. Y resultó que la temperatura estaba relacionada con el color y el tamaño de la estrella.

El astrónomo danés Ejnar Hertzsprung (en 1905) y el norteamericano Henry N. Rusell (en 1914) compararon la temperatura de diversas estrellas con su luminosidad (la cantidad de luz emitida). Hicieron un gráfico de los resultados y comprobaron que casi todas las estrellas caían sobre una línea recta, que recibió el nombre de «secuencia principal».

Por un lado había estrellas rojas y frías, cuerpos descomunales que recibieron el nombre de «gigantes rojas». Aunque cualquier zona local de su superficie era más bien tenue, la estrella en su conjunto, por poseer una superficie total enorme, emitía gran cantidad de luz.

Luego estaban las estrellas amarillas, más calientes que las gigantes rojas. Aunque más pequeñas que éstas, seguían mereciendo el nombre de gigantes, en este caso «gigantes amarillas». También había estrellas aún más pequeñas y calientes, con temperatura suficiente para exhibir un color blanco-azulado. Las estrellas blanco-azuladas parecían ser las de máxima temperatura. Las que venían después eran más pequeñas y más frías. Eran las «enanas amarillas» (como nuestro Sol) y las «enanas rojas», estrellas muy débiles y muy frías.

¿Evolución de las estrellas?

La humanidad entrevió por primera vez una pauta de continuo cambio en los cielos. Podía ser que éstos envejecieran igual que envejecía la Tierra, o que las estrellas tuvieran un ciclo vital como el de los seres vivos; cabía incluso que hubiera una evolución estelar, igual que existía una evolución de la vida sobre la Tierra.

Russell sugirió que las estrellas nacían bajo la forma de ingentes masas de gas frío y disperso que emitía un débil calor rojo. A medida que envejecían, iban contrayéndose y tornándose más calientes hasta alcanzar una temperatura máxima. A partir de ahí seguían contrayéndose, pero descendiendo ahora hacia temperaturas más bajas, hasta convertirse finalmente en rescoldos extintos. El Sol, según este esquema, se hallaría bastante más allá del ecuador de la vida.

La teoría, sin embargo, era demasiado simple. Lo cierto es que a principios del siglo XX los astrónomos no sabían aún por qué las estrellas brillaban y radiaban luz. En la década de los ochenta del siglo pasado se había sugerido que la energía de la radiación de las estrellas provenía de su lenta contracción, y que la energía gravitacional se convertía en luz (lo cual encajaba bien con la teoría de Russell). Pero la idea hubo de ser abandonada, porque el proceso anterior no podía suministrar suficiente energía.

Los científicos habían descubierto en los años noventa que el corazón del átomo, el «núcleo», albergaba una reserva de energía mucho mayor de lo que se habían imaginado. Más tarde, en los años treinta de nuestro siglo, el físico germano - norteamericano Hans A. Bethe elaboró un esquema de reacciones nucleares que podía desarrollarse en el interior del Sol y proporcionarle la energía necesaria para formar la luz.

Según la hipótesis de Bethe, estas reacciones consistían en la conversión de átomos de hidrógeno (los átomos más sencillos de todos) en átomos de helio (que son algo más complejos). La enorme reserva de hidrógeno del Sol le ha permitido brillar durante cinco mil a seis mil millones de años y le permitirá lucir todavía durante bastantes miles de millones de años más. El Sol no está, por tanto, en declive; es aún una estrella joven.

Los astrónomos han continuado estudiando la naturaleza de las reacciones nucleares que tienen lugar en el interior de las estrellas. Según se cree, a medida que el hidrógeno se convierte en helio, este elemento se acumula en el centro y forma un «núcleo de helio». Este núcleo va subiendo de temperatura con la edad de la estrella, hasta que los átomos de helio comienzan a interaccionar y formar átomos aún más complejos. Y aparte de esto, se cree que ocurren otros cambios también.

Una explosión tremenda

En último término, la reserva inicial de hidrógeno de la estrella desciende por debajo de cierto nivel. La temperatura y el brillo de la estrella cambian tan drásticamente que el astro abandona la secuencia principal. Sufre una tremenda expansión y a veces comienza a pulsar a medida que su estructura se hace más inestable.

La estrella puede entonces explosionar. En ese caso, prácticamente todo el «combustible» que queda se inflama inmediatamente y la estrella adquiere un brillo inusitado por breve tiempo. Explosiones de esta clase son las que formaron las novas observadas por Hiparco y Tycho Brahe.

Dicho con pocas palabras, los astrónomos han desarrollado la idea del cambio celeste (que tan perplejo dejó a Hiparco hace dos mil años) hasta el punto de poder discutir cómo las estrellas nacen, crecen, envejecen y mueren.

Pero los astrónomos van todavía más lejos. Algunos especulan que el universo nació en una tremenda explosión cuyos fragmentos siguen alejándose, aún hoy, unos de otros. Cada fragmento es una vasta galaxia de miles de millones de estrellas. Quizá llegue el día en que todas las galaxias se pierdan de vista, en que todas las estrellas hayan explosionado y el universo muera.

O quizá sea, como piensan algunos astrónomos, que el universo está renaciendo constantemente, que muy lentamente se forme sin cesar nueva materia y que de ella nazcan nuevas estrellas y galaxias mientras las viejas mueren.

La idea del cambio celeste nos proporciona teorías, no sólo de la evolución estelar, sino incluso de una evolución cósmica: una «gran idea de la ciencia» que es de ámbito casi demasiado amplio para abarcarla con la mente.



Hipócrates – Teoría de los demonios expulsados

Este tratado mantiene con vehemencia la inutilidad de atribuir la enfermedad a los demonios. Cada enfermedad tiene su causa natural, y compete al médico descubrirla. Conocida la causa, puede hallarse el remedio. Y esto es incluso cierto —así lo afirma el tratado— para ese mal misterioso y aterrador que se llama epilepsia. No es de ningún modo un mal sagrado, sino una enfermedad como cualquier otra.

Lo que en resumidas cuentas defiende el tratado es que la idea de causa y efecto se aplica también a las cosas vivientes, entre ellas el hombre. Como el mundo de lo vivo es tan complejo, puede que no sea fácil detectar las relaciones de causa y efecto; pero al final puede y debe hacerse.

La Medicina tuvo que luchar durante muchos siglos contra la creencia común en demonios y malos espíritus y contra el uso de ritos y conjuros mágicos con fines terapéuticos. Pero las ideas de Hipócrates no cayeron jamás en el olvido.

La doctrina de Hipócrates sobre el tratamiento de los enfermos le ha valido el nombre de «padre de la Medicina». En realidad es más que eso, pues aplicó la noción de ley natural a los seres vivos y dio así el primer gran paso contra el vitalismo. Desde el momento en que se aplicó la ley natural a la vida, los científicos pudieron empezar a estudiarla sistemáticamente. Por eso, las ideas de Hipócrates abrieron la posibilidad de una ciencia de la vida (biología), lo cual le hace acreedor a un segundo título, el de «padre de la biología».



Rumford – Teoria del calor

Rumford y el calor: No es fácil sentir demasiada simpatía por Benjamín Thompson, una de esas personas astutas cuya primera v única preocupación son ellas mismas. Cuando sólo tenía diecinueve años escapó de la pobreza de su infancia casándose con una rica viuda que casi le doblaba en edad.

Thompson nació en Woburn, Massachusetts, en 1753. En aquellos días, Massachusetts y los demás estados norteamericanos eran todavía colonias británicas. Pocos años después de casarse Thompson estalló la Revolución Americana, y esta vez marró el pronóstico y apuntó por el perdedor. Se enroló en el ejército británico en Boston y fue espía contra los patriotas coloniales.

Cuando los británicos abandonaron Boston se llevaron a Thompson consigo. Sin grandes remordimientos dejó atrás a su mujer y a sus hijos y jamás regresó.

En Europa ofreció sus servicios a cualquier gobierno que accedió a pagar el precio que pedía, y con todos tuvo líos por aceptar sobornos, vender secretos y tener, en general, una conducta inmoral y deshonesta. Thompson salió en 179O de Inglaterra para el continente europeo. Entró al servicio del Estado de Baviera (que hoy pertenece a Alemania, pero que en aquel entonces era nación independiente) y allí le otorgaron el título de conde. Thompson adoptó el nombre de conde de Rumford, pues «Rumford» era como se llamaba originalmente la ciudad de Concord (New Hampshire) donde se casó con su primera mujer. Así fue como Benjamín Thompson ha pasado a la historia con el nombre de Rumford.

Una mente científica

Una cosa sí puede decirse a favor de Rumford, y es que tenía una sed inagotable de conocimiento. Desde niño hizo gala de una mente activa y despierta que penetraba hasta el meollo mismo de los problemas.

A lo largo de su vida hizo muchos experimentos de interés y llegó a numerosas conclusiones importantes. La más señalada tuvo como escenario Baviera, donde estuvo al frente de una fábrica de cañones. Los cañones se hacían vertiendo el metal en moldes y taladrando luego la pieza para formar el alma. Esta última operación se efectuaba con una taladradora rápida.

Como es lógico, el cañón y el taladro se calentaban y había que estar echando constantemente agua fría por encima para refrigerarlos. Al ver salir el calor, la mente incansable de Rumford se puso en funcionamiento.

Antes de nada, ¿qué era el calor? Los científicos de aquella época, entre ellos el gran químico francés Lavoisier, creían que el calor era un fluido ingrávido que llamaban calórico. Al introducir más calórico en una sustancia ésta se calentaba, hasta que finalmente el calórico rebosaba y fluía en todas direcciones. Por eso, la calidez de un objeto al rojo vivo se dejaba sentir a gran distancia. El calor del Sol, por ejemplo, se notaba a 150 millones de kilómetros. Al poner en contacto un objeto caliente con otro frío, el calórico fluía desde el primero al segundo. Ese flujo hacía que el objeto caliente se enfriara y que el frío se calentara.

La teoría funcionaba bastante bien, y muy pocos científicos la ponían en duda. Uno de los que sí dudó fue Rumford, preguntándose por qué el calórico salía del cañón. Los partidarios de la teoría del calórico contestaron que era porque el taladro rompía en pedazos el metal, dejando que el calórico contenido en éste fluyese hacia afuera, como el agua de un jarrón roto.

Rumford, escéptico, revolvió entre los taladros y halló uno completamente romo y desgastado. «Utilizad éste», dijo. Los obreros objetaron que no servía, que estaba gastado; pero Rumford repitió la orden en tono más firme y aquéllos se apresuraron a cumplirla.

El taladro giró en vano, sin hacer mella en el metal; pero en cambio producía aún más calor que uno nuevo. Imagínense la extrañeza de los obreros al ver el gesto complacido del conde.

Rumford vio claro que el calórico no se desprendía por la rotura del metal, y que quizá no procediese siquiera de éste. El metal estaba inicialmente frío, por lo cual no podía contener mucho calórico; y, aun así, parecía que el calórico fluía en cantidades ilimitadas.

Rumford, para medir el calórico que salía del cañón, observó cuánto se calentaba el agua utilizada para refrigerar el taladro y el cañón, y llegó a la conclusión de que si todo ese calórico se reintegrara al metal, el cañón se fundiría.

Partículas en movimiento

Rumford llegó al convencimiento de que el calor no era un fluido, sino una forma de movimiento. A medida que el taladro rozaba contra el metal, su movimiento se convertía en rápidos y pequeñísimos movimientos de las partículas que constituían el bronce. Igual daba que el taladro cortara o no el metal; el calor provenía de esos pequeñísimos y rápidos movimientos de las partículas, y, como es natural, seguía produciéndose mientras girara el taladro. La producción de calor no tenía nada que ver con ningún calórico que pudiera haber o dejar de haber en el metal.

El trabajo de Rumford quedó ignorado durante los cincuenta años siguientes. Los científicos se contentaban con la idea del calórico y con inventar teorías que explicaran cómo fluía de un cuerpo a otro. La razón, o parte de la razón, es que vacilaban en aceptar la idea de diminutas partículas que experimentaban un movimiento rápido y pequeñísimo que nadie podía ver.

Sin embargo, unos diez años después de los trabajos de Rumford, John Dalton enunció su teoría atómica. Poco a poco, los científicos iban aceptando la existencia de los átomos. ¿No sería, entonces, que las pequeñas partículas móviles de Rumford fuesen átomos o moléculas (grupos de átomos)?

Podía ser. Pero ¿cómo imaginar el movimiento de billones y billones de moléculas invisibles? ¿Se movían todas al unísono, o unas para un lado y otras para otro, según una ley fija? ¿O tendrían acaso un movimiento aleatorio, al azar, con direcciones y velocidades arbitrarias, sin poder decir en qué dirección y con qué velocidad se movía cualquiera de ellas?

El matemático suizo Daniel Bernouilli, a principios del siglo XVIII, algunas décadas antes de los trabajos de Rumford, había intentado estudiar el problema del movimiento aleatorio de partículas en gases. Esto fue mucho antes de que los científicos aceptaran la teoría atómica y, por otro lado, las matemáticas de Bernouilli no tenían tampoco la exactitud que requería el caso. Aun así, fue un intento válido.

En los años 60 del siglo XIX entró en escena James Clerk Maxwell. Maxwell partió del supuesto de que las moléculas que componían los gases tenían movimientos aleatorios, y mediante agudos análisis matemáticos demostró que el movimiento aleatorio proporcionaba una bella explicación del comportamiento de los gases.

Maxwell mostró cómo las partículas del gas, moviéndose al azar, creaban una presión contra las paredes del recipiente que lo contenía. Además, esa presión variaba al comprimir las partículas o al dejar que se expandieran. Esta explicación del comportamiento de los gases se conoce por la teoría cinética de los gases («cinética» proviene de una palabra griega que significa «movimiento»).

Maxwell suele compartir la paternidad de esta teoría con el físico austríaco Ludwig Boltzmann. Los dos, cada uno por su lado, elaboraron la teoría casi al mismo tiempo.

La solución de Maxwell

Una de las importantes leyes del comportamiento de los gases afirma que un gas se expande al subir la temperatura y se contrae al disminuir ésta. Según la teoría del calórico, la explicación de este fenómeno era simple: al calentarse un gas, entra calórico en él; como el calórico ocupa espacio, el gas se expande; al enfriarse el gas, sale el calórico y aquél se contrae.

¿Qué tenía que decir Maxwell a esto? Por fuerza tuvo que pensar en el experimento de Rumford. El calor es una forma de movimiento. Al calentar un gas, sus moléculas se mueven más deprisa y empujan a las vecinas hacia afuera. El gas se expande. Al disminuir la temperatura, ocurre lo contrario y el gas se contrae.

Maxwell halló una ecuación que especificaba la gama de velocidades que debían tener las moléculas gaseosas a una temperatura dada. Algunas se movían despacio y otras deprisa; pero la mayoría tendrían una velocidad intermedia. De entre todas estas velocidades había una que era máximamente probable a una temperatura dada. Al subir la temperatura, aumentaba también esa? velocidad más probable.

Esta teoría cinética del calor era aplicable tanto a líquidos y sólidos como a gases. En un sólido, por ejemplo, las moléculas no volaban de acá para allá como proyectiles, que es lo que sucedía en un gas; pero en cambio podían vibrar en torno a un punto fijo. La velocidad de esta vibración, lo mismo que las moléculas proyectiles de los gases, obedecían a las ecuaciones de Maxwel.

Una explicación mejor

Todas las propiedades del calor podían ser exploradas igual de bien por la teoría cinética que por la del calórico. Pero aquélla daba fácilmente cuenta de algunas propiedades (como las descritas por Rumford) que la teoría del calórico no había conseguido explicar bien.

La teoría del calórico describía la transferencia de calor como un flujo de calórico desde el objeto caliente al frío. Según la teoría cinética, la transferencia de calor era resultado del movimiento de moléculas. Al poner en contacto un cuerpo caliente con otro frío, sus moléculas, animadas de rápido movimiento, chocaban con las del objeto frío, que se movían más lentamente. Como consecuencia de ello, las moléculas rápidas perdían velocidad y las lentas se aceleraban un poco, con lo cual «fluía» calor del cuerpo caliente al frío.

La concepción del calor como una forma de movimiento es otra de las grandes ideas de la ciencia. Maxwell le dio mayor realce aún mostrando cómo utilizar el movimiento aleatorio para explicar ciertas leyes muy concretas de la naturaleza cuyo efecto era totalmente predecible y nada aleatorio.

La idea de Maxwell fue luego ampliada notablemente, y los científicos dan hoy por supuesto que el comportamiento aleatorio de átomos y moléculas pueden producir resultados muy asombrosos. Cabe, inclusive, que la vida misma fuese creada a partir de la materia inerte en los océanos mediante movimientos aleatorios de átomos y moléculas.



Planck – Teoría de los cuantos

A mediados del siglo XIX la ciencia descubrió que la luz proporcionaba a cada elemento químico una especie de «huellas digitales». Veamos cómo puede utilizarse la luz para distinguir un elemento de otro.

Si se calienta un elemento hasta la incandescencia, la luz que emite estará constituida por ondas de diversas longitudes. El grupo de longitudes de onda que produce el elemento difiere del de cualquier otro elemento.

Cada longitud de onda produce un efecto diferente en el ojo y es percibida, por tanto, como un color distinto de los demás. Supongamos que la luz de un elemento dado es descompuesta en sus diversas ondas. Este grupo de longitudes de onda, que es característico del elemento, se manifiesta entonces en la forma de un patrón de colores también singular. Pero ¿cómo se puede desglosar la luz de un elemento incandescente en ondas elementales?

Una manera consiste en hacer pasar la luz por una rendija y luego por un trozo triangular de vidrio que se denomina prisma. El prisma refracta cada onda en medida diferente, según su longitud, y forma así imágenes de la rendija en los colores que se hallan asociados con las longitudes de onda del elemento. El resultado es un «espectro» de rayas de color cuya combinación difiere de la de cualquier otro elemento.

Este procedimiento lo elaboró con detalle el físico alemán Gustav Robert Kirchhoff en 1859. Kirchhoff y el químico alemán Robert Wilhelm von Bunsen inventaron el espectroscopio —el instrumento descrito anteriormente— y lo emplearon para estudiar los espectros de diversos elementos. Y, de paso, descubrieron dos elementos nuevos al hallar combinaciones de rayas que no coincidían con las de ningún elemento conocido.

Otros científicos detectaron más tarde la huella de elementos terrestres en los espectros del Sol y las estrellas. Por otro lado, el elemento helio fue descubierto en el Sol en 1868, mucho antes de ser detectado en la Tierra. Estos estudios de los espectros demostraron finalmente que la materia que constituye el universo es en todas partes la misma.

El hallazgo más importante de Kirchhoff fue éste: que cuando un elemento es calentado hasta emitir luz de ciertas longitudes de onda, al enfriarse tiende a absorber esas mismas longitudes de onda.



Linneo – Teoria de la clasificación

La mente científica más influyente en la historia del mundo quizá haya sido la del filósofo griego Aristóteles (384 a. C. - 322 a. C). La ideas de Aristóteles acerca de temas biológicos, que eran uno de sus puntos fuertes, ejercieron menos influencia, en la ciencias, que muchos otros de sus temas estudiados. La ciencia natural era su campo preferido, y dedicó años al estudio de los animales marinos.

Aristóteles no se conformó con contemplar los animales y describirlos. Ayudado por su claridad de ideas y su amor por el orden, fue más lejos y clasificó los animales en grupos. Esa clasificación se llama hoy «taxonomía», que en griego significa «sistema de ordenación».

Todo el mundo tiene cierta tendencia a clasificar las cosas. Salta a la vista que los leones y los tigres se parecen bastante, que las ovejas se parecen a las cabras y que las moscas se parecen a los tábanos.

Aristóteles, sin embargo, no se conformó con observaciones casuales, sino que hizo una lista de más de quinientos tipos diferentes de animales y los agrupó cuidadosamente en clases. Y además, colocó estas clases en orden, desde las más simples a las más complicadas.

Aristóteles observó que algunos animales no pertenecían a la clase a la que parecían asemejarse más. Casi todo el mundo daba por supuesto, por ejemplo, que el delfín era un pez: vivía en el agua y tenía la misma forma que los peces. Aristóteles, por el contrario, observó que el delfín respiraba aire, paría crías vivas y nutría al feto mediante un órgano llamado «placenta». El delfín se parecía en estos aspectos a las bestias cuadrúpedas de tierra firme, por lo cual lo incluyó entre los mamíferos, y no entre los peces.

Los naturalistas ignoraron esta conclusión, absolutamente correcta, durante dos mil años, hasta que un joven naturalista sueco Carl von Linné publicó en 1735 un opúsculo en el que alistaba diferentes criaturas según un sistema de su invención. (Hoy se le conoce más por la versión castellanizada de su nombre, que es Linneo, o por la latina, Carolus Linnaeus.) Su trabajo estaba basado en viajes intensivos por toda Europa, incluido el norte de Escandinavia, que hasta entonces no había sido bien explorado.

Linneo describía breve y claramente cada clase o especie de planta y animal, agrupaba luego cada colección de especies similares en un género y daba finalmente a cada clase de planta o animal dos nombres latinos: el del género y el de la especie.

Un ejemplo: el gato y el león son dos especies muy parecidas, pese a que el segundo es mucho más grande y fiero que el primero; de ahí que ambos pertenezcan al mismo género, Felis (que en latín es «gato»). El segundo nombre latino sirve para distinguir el gato común del león y de otras especies del mismo género. Así, el gato es Felis domesticus, mientras que el león es Felis leo.

Análogamente, el perro y el lobo pertenecen al género Canis («perro»). El perro es Canis familiaris y el lobo Canis lupus.

Linneo dio también a los seres humanos un nombre latino. Al hombre lo colocó en el género Homo y a la especie humana la llamó Homo sapiens («hombre sabio»).

La clasificación de la vida dio así lugar a la idea de que todos los seres vivientes estaban inmersos en un mismo y único fenómeno. Y este concepto conduciría, a su vez, a una de las indiscutiblemente «grandes ideas de la ciencia»: la evolución de las especies.



Wöhler – Teoría del enfoque vitalista

Berzelius, como vemos, era vitalista, partidario del «vitalismo». Creía que la materia viva obedecía a leyes naturales distintas de las que regían sobre la materia inerte. Más de dos mil años antes, Hipócrates había sugerido que las leyes que regulaban ambos tipos de materia eran las mismas. Pero la idea seguía siendo difícil de digerir, porque los tejidos vivos eran muy complejos y sus funciones no eran fáciles de comprender. Muchos químicos estaban por eso convencidos de que los métodos elementales del laboratorio jamás servirían para estudiar las complejas sustancias de los organismos vivos.

Wöhler trabajaba, como decimos, con sustancias inorgánicas, sin imaginarse para nada que estaba a punto de revolucionar el campo de la química orgánica. Todo comenzó con una sustancia inorgánica llamada cianato amónico, que al calentarlo se convertía en otra sustancia. Para identificarla, Wöhler estudió sus propiedades, y tras eliminar un factor tras otro comenzó a subir de punto su estupor.

Wöhler, no queriendo dejar nada en manos del azar, repitió una y otra vez el experimento; el resultado era siempre el mismo. El cianato amónico, una sustancia inorgánica, se había transformado en urea, que era un conocido compuesto orgánico. Wöhler había hecho algo que Berzelius tenía por imposible: obtener una sustancia orgánica a partir de otra inorgánica con sólo calentarla.

El revolucionario descubrimiento de Wöhler fue una revelación; muchos otros químicos trataron de emularle y obtener compuestos orgánicos a partir de inorgánicos. El químico francés Pierre E. Berthelot formó docenas de tales compuestos en los años cincuenta del siglo pasado, al tiempo que el inglés William H. Perkin obtenía una sustancia cuyas propiedades se parecían a las de los compuestos orgánicos pero que no se daba en el reino de lo viviente. Y luego siguieron miles y miles de otros compuestos orgánicos sintéticos.

Los químicos estaban ahora en condiciones de preparar compuestos que la naturaleza sólo fabricaba en los tejidos vivos. Y además eran capaces de formar otros, de la misma clase, que los tejidos vivos ni siquiera producían.

Todos estos hechos no lograron, sin embargo, acabar con las explicaciones vitalistas. Podía ser que los químicos fuesen capaces de sintetizar sustancias formadas por los tejidos vivos —replicaron los partidarios del vitalismo—, pero cualitativamente era diferente el proceso. El tejido vivo formaba esas sustancias en condiciones de suave temperatura y a base de componentes muy delicados, mientras que los químicos tenían que utilizar mucho calor o altas presiones o bien reactivos muy fuertes.

Ahora bien, los químicos sabían cómo provocar, a la temperatura ambiente, reacciones que de ordinario sólo ocurrían con gran aporte de calor. El truco consistía en utilizar un catalizador. El polvo de platino, por ejemplo, hacía que el hidrógeno explotara en llamas al mezclarse con el aire. Sin el platino era necesario aportar calor para iniciar la reacción.



0
0
0
5
0No comments yet
      GIF
      New