Check the new version here

Popular channels

Megapost Pc y sus cosas!

aca les dejo este post para que aprendan los nuevos en el tema las cosas del pc..

La placa base del PC.
En sus ranuras van fijados todos los demás componentes, y su calidad influirá sustancialmente en la velocidad del equipo


La placa base, o placa madre (motherboard), es el elemento principal de todo ordenador, en el que se encuentran o al que se conectan todos los demás aparatos y dispositivos. La placa base es el esqueleto de nuestro ordenador. En sus ranuras van fijados todos los demás componentes, y su calidad influirá sustancialmente en la velocidad del equipo, además de las posibilidades del equipo.

Las actuales placas base disponen de un software para la monitorización del sistema que se encarga de medir las principales constantes de nuestra placa.

La placa base es el elemento mas importante del PC. Esta pensada y diseñada para albergar distintos tipos de componentes y por tanto existirán modelos de distinto tipo y fabricantes. Todos llevan una serie de componentes comunes y que dependen del microprocesador para el que han sido diseñadas.

Los elementos que actualmente se incluyen en las estandar300px-typical_intel_chipset.jpgizadas placas base son los siguientes :

# Microprocesador
# Memoria RAM
# Chipset
# La memoria caché
# Los buses
# Ranuras o slots de alimentación
# Puertos (serie, paralelo, ps/2. usb)
# Reloj
# ROM–BIOS-CMOS
# Jumpers o microinterruptores
# Pila
# Leds

Tarjeta de Sonido :

Una tarjeta de sonido o placa de sonido es una tarjeta de expansión para computadoras que permite la entrada y salida de audio bajo el control de un programa informático llamado controlador (en inglés driver). El típico uso de las tarjetas de sonido consiste en proveer mediante un programa que actúa de mezclador, que las aplicaciones multimedia del componente de audio suenen y puedan ser gestionadas. Estas aplicaciones multimedia engloban composición y edición de video o audio, presentaciones multimedia y entretenimiento (videojuegos). Algunos equipos tienen la tarjeta ya integrada, mientras que otros requieren tarjetas de expansión. En el 2008 el hecho de que un equipo no incorpore tarjeta de sonido, puede observarse en computadores que por circunstancias profesionales no requieren de dicho servicio.

Caracteristicas Generales :


Una tarjeta de sonido típica, incorpora un chip de sonido que por lo general contiene el Conversor digital-analógico, el cual cumple con la importante función de "traducir" formas de ondas grabadas o generadas digitalmente en una señal analógica y viceversa. Esta señal es enviada a un conector (para auriculares) en donde se puede conectar cualquier otro dispositivo como un amplificador, un altavoz, etc. Para poder grabar y reproducir audio al mismo tiempo con la tarjeta de sonido debe poseer la característica "full-duplex" para que los dos conversores trabajen de forma independiente.

Los diseños más avanzados tienen más de un chip de sonido, y tienen la capacidad de separar entre los sonidos sintetizados (usualmente para la generación de música y efectos especiales en tiempo real utilizando poca cantidad de información y tiempo del microprocesador y quizá compatibilidad MIDI) y los sonidos digitales para la reproducción.

Esto último se logra con DACs (por sus siglas en inglés Digital-Analog-Conversor o Conversor-Digital-Analógico), que tienen la capacidad de reproducir múltiples muestras digitales a diferentes tonos e incluso aplicarles efectos en tiempo real como el filtrado o distorsión. Algunas veces, la reproducción digital de multi-canales puede ser usado para sintetizar música si es combinado con un banco de instrumentos que por lo general es una pequeña cantidad de memoria ROM o flash con datos sobre el sonido de distintos instrumentos musicales. Otra forma de sintetizar música en las PC es por medio de los "códecs de audio" los cuales son programas diseñados para esta función pero consumen mucho tiempo de microprocesador. Esta también nos sirve para teléfonos móviles en la tecnología celular del mundo moderno de tal modo que estos tengan una mayor capacidad de bulla. La mayoría de las tarjetas de sonido también tienen un conector de entrada o "Line In" por el cual puede entrar cualquier tipo de señal de audio proveniente de otro dispositivo como micrófonos, reproductores de casetes entre otros y luego así la tarjeta de sonido puede digitalizar estas ondas y guardarlas en el disco duro del computador.

Otro conector externo que tiene una tarjeta de sonido típica es el conector para micrófono. Este conector está diseñado para recibir una señal proveniente de dispositivos con menor voltaje al utilizado en el conector de entrada "Line-In".


Funcionalidades :

Las operaciones básicas que permiten las tarjetas de sonido convencionales son las siguientes:

* Grabación

La señal acústica procedente de un micrófono u otras fuentes se introduce en la tarjeta por los conectores. Esta señal se transforma convenientemente y se envía al computador para su almacenamiento en un formato específico.

* Reproducción

La información de onda digital existente en la máquina se envía a la tarjeta. Tras cierto procesado se expulsa por los conectores de salida para ser interpretada por un altavoz u otro dispositivo.

* Síntesis

El sonido también se puede codificar mediante representaciones simbólicas de sus características (tono, timbre, duración...), por ejemplo con el formato MIDI. La tarjeta es capaz de generar, a partir de esos datos, un sonido audible que también se envía a las salidas.

Aparte de esto, las tarjetas suelen permitir cierto procesamiento de la señal, como compresión o introducción de efectos. Estas opciones se pueden aplicar a las tres operaciones.
Componentes

-La figura siguiente muestra un diagrama simplificado de los componentes típicos de una tarjeta de sonido. En él se indica cuál es la información que viaja por cada enlace.



Interfaz con placa madre :
Sirve para transmitir información entre la tarjeta y el computador. Puede ser de tipo PCI, ISA, PCMCIA, USB, etc.

Buffer :

La función del buffer es almacenar temporalmente los datos que viajan entre la máquina y la tarjeta, lo cual permite absorber pequeños desajustes en la velocidad de transmisión. Por ejemplo, si la CPU no envía un dato a tiempo, la tarjeta puede seguir reproduciendo lo que tiene en el buffer; si lo datos llegan demasiado rápido, se van guardando. Lo mismo pasa en sentido inverso. Muchos ordenadores realizan la transmisión por DMA. Esto permite transportar los datos entre la tarjeta y la memoria directamente, sin la intervención de la CPU, lo cual le ahorra trabajo.

DSP (Procesador de señal digital) :

Procesador de señal digital. Es un pequeño microprocesador que efectúa cálculos y tratamientos sobre la señal de sonido, liberando así a la CPU de ese trabajo. Entre las tareas que realiza se incluye compresión (en la grabación) y descompresión (en la reproducción) de la señal digital. También puede introducir efectos acústicos tales como coros, reverberación, etc., a base de algoritmos.

Los DSP suelen disponer de múltiples canales para procesar distintos flujos de señal en paralelo. También pueden ser full-duplex, lo que les permite manipular datos en ambos sentidos simultáneamente.

ADC (Conversor analógico-digital) :

Conversor analógico-digital. Se encarga de transformar la señal de sonido analógica en su equivalente digital. Esto se lleva a cabo mediante tres fases: muestreo, cuantificación y codificación. Como resultado se obtiene una secuencia de valores binarios que representan el nivel de tensión en un momento concreto.

El número de bits por muestra es fijo, y suele ser 16. La frecuencia de muestreo se puede controlar desde el PC, y normalmente es una fracción de 44.1kHz.

DAC (Conversor digital-analógico) :

Conversor digital-analógico. Su misión es reconstruir una señal analógica a partir de su versión digital. Para ello el circuito genera un nivel de tensión de salida de acuerdo con los valores que recibe, y lo mantiene hasta que llega el siguiente. En consecuencia se produce una señal escalonada, pero con la suficiente frecuencia de muestreo puede reproducir fielmente la original.

Sintetizador FM (modulación de frecuencia) :

La síntesis por modulación de frecuencias implementa uno de los métodos de sintetizar sonido a partir de información simbólica (MIDI). Su funcionamiento consiste en variar la frecuencia de una onda portadora sinusoidal en función de una onda moduladora. Con esto se pueden conseguir formas de onda complejas con múltiples armónicos, que son lo que define el timbre. El tono y volumen del sonido deseado los determinan la frecuencia fundamental y la amplitud de la onda.

Los primeros sintetizadores FM generaban una señal analógica. Sin embargo, posteriormente se han desarrollado versiones que trabajan digitalmente. Esto da más flexibilidad y por tanto más expresividad a la generación de ondas, a la vez que permite someter la señal a tratamiento digital.

Sintetizador por Tabla de Ondas :

La síntesis mediante tabla de ondas es un método alternativo al FM. En vez de generar sonido de la nada, utiliza muestras grabadas de los sonidos de instrumentos reales. Estas muestras están almacenadas en formato digital en una memoria ROM incorporada, aunque también pueden estar en memoria principal y ser modificables. El sintetizador busca en la tabla el sonido que más se ajusta al requerido en cada momento. Antes de enviarlo realiza algunos ajustes sobre la muestra elegida, como modificar el volumen, prolongar su duración mediante un bucle, o alterar su tono a base de aumentar o reducir la velocidad de reproducción.

Este componente puede tener una salida analógica o digital, aunque es preferible la segunda. En general el sonido resultante es de mayor calidad que el de la síntesis FM.

Alternativamente, este proceso puede ser llevado a cabo enteramente por software, ejecutado por la CPU con muestras almacenadas en disco y un algoritmo apropiado (códecs de audio). Esta técnica es muy utilizada porque permite abaratar el coste de la tarjeta.

Mezclador :

El mezclador tiene como finalidad recibir múltiples entradas, combinarlas adecuadamente, y encaminarlas hacia las salidas. Para ello puede mezclar varias señales (por ejemplo, sacar por el altavoz sonido reproducido y sintetizado) o seleccionar alguna de ellas (tomar como entrada el micrófono ignorando el Line-In). Este comportamiento se puede configurar por software.

Tanto las entradas como las salidas pueden proceder de la tarjeta o del exterior. El mezclador suele trabajar con señales analógicas, aunque también puede manejar digitales (S/PDIF).

Conectores :

Son los elementos físicos en los que deben conectarse los dispositivos externos, los cuales pueden ser de entrada o de salida.

Casi todas las tarjetas de sonido se han adaptado al estándar PC 99 de Microsoft que consiste en asignarle un color a cada conector externo, de este modo:

Color Función

Rosa Entrada analógica para micrófono.
Azul Entrada analógica "Line-In"
Verde Salida analógica para la señal estéreo principal (altavoces frontales).
Negro Salida analógica para altavoces traseros.
Plateado Salida analógica para altavoces laterales.
Naranja Salida Digital SPDIF (que algunas veces es utilizado como salida analógica para altavoces centrales).

Los conectores más utilizados para las tarjetas de sonido a nivel de usuario son los minijack al ser los más económicos. Con los conectores RCA se consigue mayor calidad ya que utilizan dos canales independientes, el rojo y el blanco, uno para el canal derecho y otro para el izquierdo.

A nivel profesional se utilizan las entras y salidas S/PDIF, también llamadas salidas ópticas digitales, que trabajan directamente con sonido digital eliminando las pérdidas de calidad en las conversiones.

Para poder trabajar con dispositivos MIDI se necesita la entrada y salida MIDI.

Muestreo de sonido :

Para producir un sonido el altavoz necesita una posición donde golpear, que genera, dependiendo del lugar golpeado, una vibración del aire diferente que es la que capta el oído humano. Para determinar esa posición se necesita una codificación. Por lo tanto cuanto mayor número de bits se tenga, mayor número de posiciones diferentes se es capaz de representar.

Por ejemplo, si la muestra de sonido se codifica con 8 bits se tienen 256 posiciones diferentes donde golpear. Sin embargo con 16 bits se conseguirían 65536 posiciones. No se suelen necesitar más de 16 bits, a no ser que se quiera trabajar con un margen de error que impida que la muestra cambie significativamente.


Frecuencia de muestreo :

Las tarjetas de sonido y todos los dispositivos que trabajan con señales digitales lo pueden hacer hasta una frecuencia límite, mientras mayor sea esta mejor calidad se puede obtener. Las tarjetas de sonido que incluían los primeros modelos de Apple Macintosh tenían una frecuencia de muestreo de 22050 Hz (22,05 KHz) de manera que su banda de frecuencias para grabar sonido y reproducirlo estaba limitada a 10 KHz con una precisión de 8 bits que proporciona una relación señal sobre ruido básica de solo 40 dB, las primeras tarjetas estereofónicas tenían una frecuencia de muestreo de 44100 Hz (igual que los reproductores de CD) con lo que la banda útil se extendió hasta los 20 KHz (alta calidad) pero se obtiene un sonido más claro cuando se eleva un poco esta frecuencia pues hace que los circuitos de filtrado funcionen mejor, por lo que los DAT (digital audio tape) tienen una frecuencia de conversión en sus convertidores de 48 KHz, con lo cual la banda se extiende hasta los 22 KHz.

Debe recordarse que la audición humana está limitada a los 16 ó 17 KHz, pero si los equipos se extienden más allá de este límite se tiene una mejor calidad, también que la frecuencia de muestreo (del convertidor) debe ser de más del doble que la banda que se pretende utilizar (teorema de Nyquist en la práctica).

Finalmente los nuevos formatos de alta definición usan frecuencias de muestreo de 96 KHz (para tener una banda de 40 KHz) y hasta 192 KHz, no porque estas frecuencias se puedan oír, sino porque así es más fácil reproducir las que si se oyen.

Canales de sonido y polifonía :

Otra característica importante de una tarjeta de sonido es su polifonía. Es el número de distintas voces o sonidos que pueden ser tocados simultánea e independientemente. El número de canales se refiere a las distintas salidas eléctricas, que corresponden a la configuración del altavoz, como por ejemplo 2.0 (estéreo), 2.1 (estéreo y subwoofer), 5.1, etc. En la actualidad se utilizan las tarjetas de sonido envolvente (surround), principalmente Dolby Digital 8.1 o superior. El número antes del punto (8) indica el número de canales y altavoces satélites, mientras que el número después del punto (1) indica la cantidad de subwoofers. En ocasiones los términos voces y canales se usan indistintamente para indicar el grado de polifonía , no la configuración de los altavoces.


Historia de las tarjetas de sonido para la arquitectura del IBM PC :

Las tarjetas de sonido eran desconocidas para los ordenadores basados en el IBM PC hasta 1988, siendo el altavoz interno del PC el único medio para producir sonido del que se disponía. El altavoz estaba limitado a la producción de ondas cuadradas, que generaba sonidos descritos como "beeps". Algunas compañías, entre las que destacaba Access Software, desarrollaron técnicas para la reproducción del sonido digital en el altavoz del PC. El audio resultante, aunque funcional, sufría distorsiones, tenía un volumen bajo y normalmente requería de los recursos destinados al resto de procesos mientras los sonidos eran reproducidos. Otros modelos de ordenadores domésticos de los años 80 incluían soporte hardware para la reproducción de sonido digital y/o síntesis musical, dejando al IBM PC en desventaja cuando aparecieron las aplicaciones multimedia como la composición de música o los juegos.

Es importante destacar que el diseño inicial y el planteamiento de marketing de las tarjetas de sonido de la plataforma IBM PC no estaban dirigidas a los juegos, pero sí que se encontraban en aplicaciones de audio específicas como composición de música o reconocimiento de voz. Esto llevó al entorno de Sierra y otras compañías en 1988 a cambiar el enfoque de las tarjetas hacia los videojuegos.

Memoria de acceso aleatorio(RAM) :

La memoria de acceso aleatorio (en inglés: random-access memory cuyo acrónimo es RAM) es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados. Es el área de trabajo para la mayor parte del software de un computador. Existe una memoria intermedia entre el procesador y la RAM, llamada caché, pero ésta sólo es una copia (de acceso rápido) de la memoria principal (típicamente discos duros) almacenada en los módulos de RAM. Por ejemplo, en el sistema operativo Windows Vista, gracias al servicio ReadyBoost, es posible asignar memoria flash de un dispositivo externo USB como memoria caché y así mejorar la velocidad del equipo informático, debido a la mayor velocidad de las Flash respecto al disco duro.

Se trata de una memoria de estado sólido tipo DRAM en la que se puede tanto leer como escribir información. Se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayoría del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo. Se dicen "de acceso aleatorio" porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder a la información de la manera más rápida posible.
Integrado de silicio de 64 bits sobre un sector de memoria de núcleo (finales de los 60)

La frase memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores. En el sentido estricto, estos dispositivos contienen un tipo entre varios de memoria de acceso aleatorio , ya que las ROM, memorias Flash , caché (SRAM) , los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición. Los módulos de RAM son pues la presentación comercial de este tipo de memoria, que se compone de integrados soldados sobre un circuito impreso.

Historia :

La denominación “de Acceso aleatorio” surgió para diferenciarlas de las memoria de acceso secuencial, debido a que en los comienzos de la computación, las memorias principales (o primarias) de las computadoras eran siempre de tipo RAM y las memorias secundarias (o masivas) eran de acceso secuencial (cintas o tarjetas perforadas). Es frecuente pues que se hable de memoria RAM para hacer referencia a la memoria principal de una computadora, pero actualmente la denominación no es precisa.

Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Antes que eso, las computadoras usaban reles y líneas de retardo de varios tipos construidas con tubos de vacío para implementar las funciones de memoria principal con o sin acceso aleatorio.

En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1 Kilobite, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenia un desempeño mayor que la memoria de núcleos.

En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4Kb en un empaque de 16 pines, mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento[3] se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización , entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular. El formato SIMM fue una mejora al anterior, eliminando los pines metálicos y dejando unas áreas de cobre en uno de los bordes del impreso, muy similares a los de las tarjetas de expansión, de hecho los módulos SIPP y los primeros SIMM tienen la misma distribución de pines.

A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido, dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK, de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes :

* FPM-RAM (Fast Page Mode RAM)

Inspirado en técnicas como el "Burst Mode" usado en procesadores como el Intel 486, se implanto un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primer vez no seria necesario decir el número de la calle, únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.


* EDO-RAM (Extended Data Output RAM)

Lanzada en 1995 y con tiempos de accesos de 40 o 30ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el buffer de salida hasta que comienza el próximo ciclo de lectura.


* BEDO-RAM (Burst Extended Data Output RAM)

Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a mas de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.


Módulos de memoria RAM :

Los módulos de memoria RAM son tarjetas de circuito impreso que tienen soldados integrados de memoria DRAM por una o ambas caras. La implementación DRAM se basa en una topología de Circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de Kilobits. Además de DRAM, los módulos poseen un integrado que permiten la identificación del mismos ante el computador por medio del protocolo de comunicación SPD.

La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el modulo al ser instalado en un zócalo apropiado de la placa base, tenga buena conexión eléctrica con los controladores de memoria y las fuentes de alimentación. Los primeros módulos comerciales de memoria eran SIPP de formato propietario, es decir no había un estándar entre distintas marcas. Otros módulos propietarios bastante conocidos fueron los RIMM, ideados por la empresa Rambus.

La necesidad de hacer intercambiable los módulos y de utilizar integrados de distintos fabricantes condujo al establecimiento de estándares de la industria como los JEDEC.

* Módulos SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits
* Módulos DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
* Módulos SO-DIMM: Usado en computadores portátiles. Formato miniaturizado de DIMM.

Relación con el resto del sistema :

Dentro de la jerarquía de memoria la RAM se encuentra en un nivel después de los registros del procesador y de las caches. Es una memoria relativamente rápida y de una capacidad media: en la actualidad (año 2009), es fácil encontrar memorias con velocidades de mas de 1 Ghz y capacidades de hasta 8 GB. La memoria RAM contenida en los módulos, se conecta a un controlador de memoria que se encarga de gestionar las señales entrantes y salientes de los integrados DRAM. Algunas señales son las mismas que se utilizan para utilizar cualquier memoria: Direcciones de las posiciones, datos almacenados y señales de control.

El controlador de memoria debe ser diseñado basándose en una tecnología de memoria, por lo general soporta solo una, pero existen excepciones de sistemas cuyos controladores soportan dos tecnologías (por ejemplo SDR y DDR o DDR1 y DDR2), esto sucede en las épocas de entrada de un nuevo tipo de RAM. Los controladores de memoria en sistemas como PC y servidores se encuentran embebidos en el llamado "North Bridge" o dentro del mismo procesador (en el caso de los procesadores AMD Athlon e Intel Core i7) y son los encargados de manejar la mayoría de información que entra y sale del procesador.

Las señales básicas en el módulo están divididas en dos buses y un conjunto misceláneo de líneas de control y alimentación. Entre todas forman el bus de memoria:

* Bus de datos: Son las líneas que llevan información entre los integrados y el controlador. Por lo general están agrupados en octetos siendo de 8,16,32 y 64 bits, cantidad que debe igualar el ancho del bus de datos del procesador. En el pasado, algunos formatos de modulo, no tenían un ancho de bus igual al del procesador.En ese caso había que montar módulos en pares o en situaciones extremas, de a 4 módulos, para completar lo que se denominaba banco de memoria, de otro modo el sistema no funciona. Esa es la principal razón de haber aumentar el número de pines en los módulos, igualando el ancho de bus de procesadores como el Pentium de 64 bits a principios de los 90.

* Bus de direcciones: Es un bus en el cual se colocan las direcciones de memoria a las que se requiere acceder. No es igual al bus de direcciones del resto del sistema, ya que está multiplexado de manera que la dirección se envía en dos etapas.Para ello el controlador realiza temporizaciones y usa las líneas de control. En cada estándar de módulo se establece un tamaño máximo en bits de este bus, estableciendo un límite teórico de la capacidad máxima por módulo.

* Señales misceláneas: Entre las que están las de la alimentación (Vdd, Vss) que se encargan de entregar potencia a los integrados. Están las líneas de comunicación para el integrado de presencia que da información clave acerca del módulo. También están las líneas de control entre las que se encuentran las llamadas RAS y CAS que controlan el bus de direcciones y las señales de reloj en las memorias sincrónicas SDRAM.

Entre las características sobresalientes del controlador de memoria, está la capacidad de manejar la tecnología de canal doble (Dual Channel)o tres canales, donde el controlador maneja bancos de memoria de 128 bits. Aunque el ancho del bus de datos del procesador sigue siendo de 64 bits, el controlador de memoria puede entregar los datos de manera intercalada, optando por uno u otro canal, reduciendo las latencias vistas por el procesador. La mejora en el desempeño es variable y depende de la configuración y uso del equipo. Esta característica ha promovido la modificación de los controladores de memoria, resultando en la aparición de nuevos chipsets (la serie 865 y 875 de Intel) o de nuevos zócalos de procesador en los AMD (el 939 con canal doble , reemplazo el 754 de canal sencillo). Los equipos de gama media y alta por lo general se fabrican basados en chipsets o zócalos que soportan doble canal.


Tecnologías de memoria :

La tecnología de memoria actual usa una señal de sincronización para realizar las funciones de lecto-escritura de manera que siempre esta sincronizada con un reloj del bus de memoria, a diferencia de las antiguas memorias FPM y EDO que eran asincrónicas. Hace más de una década toda la industria se decidió por las tecnologías síncronas, ya que permiten construir integrados que funcionen a una frecuencia mayor a 66 Mhz (en la actualidad (2009) alcanzaron los 1333 Mhz).

SDR SDRAM :

Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Fue utilizada en los Pentium II y en los Pentium III , así como en los AMD K6, AMD Athlon K7 y Duron. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. El nombre correcto es SDR SDRAM ya que ambas (tanto la SDR como la DDR) son memorias síncronas dinámicas.

DDR SDRAM :

Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos .

DDR2 SDRAM :

as memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos.

DDR3 SDRAM :

Memoria de gama alta basada en un protocolo propietario creado por la empresa Rambus, lo cual obliga a sus compradores a pagar regalías en concepto de uso. Esto ha hecho que el mercado se decante por la memoria DDR de uso libre, excepto algunos servidores de grandes prestaciones (Cray) y la consola PlayStation 3. Se presenta en módulos RIMM de 184 contactos.

Detección y corrección de errores :

Existen dos clases de errores en los sistemas de memoria, las fallas (Hard fails) que son daños en el hardware y los errores (soft errors) provocados por causas fortuitas. Los primeros son relativamente fáciles de detectar (en algunas condiciones el diagnóstico es equivocado), los segundos al ser resultado de eventos aleatorios, son más difíciles de hallar. En la actualidad la confiabilidad de las memorias RAM frente a los errores, es suficientemente alta como para no realizar verificación sobre los datos almacenados, por lo menos para aplicaciones de oficina y caseras. En los usos más críticos, se aplican técnicas de corrección y detección de errores basadas en diferentes estrategias:

* La técnica del bit de paridad consiste en guardar un bit adicional por cada byte de datos, y en la lectura se comprueba si el número de unos es par (paridad par) o impar (paridad impar), detectándose así el error.
* Una técnica mejor es la que usa ECC, que permite detectar errores de 1 a 4 bits y corregir errores que afecten a un sólo bit esta técnica se usa sólo en sistemas que requieren alta fiabilidad.

Por lo general los sistemas con cualquier tipo de protección contra errores tiene un costo más alto, y sufren de pequeñas penalizaciones en desempeño, con respecto a los sistemas sin protección. Para tener un sistema con ECC o paridad, el chipset y las memorias debe tener soportar esas tecnologías. La mayoría de placas base no poseen soporte.

Para los fallos de memoria se pueden utilizar herramientas de software especializadas que realizan pruebas integrales sobre los módulos de memoria RAM. Entre estos programas uno de los más conocidos es la aplicación Memtest86+ que detecta fallos de memoria.


Memoria RAM registrada :

Es un tipo de módulo usado frecuentemente en servidores y equipos especiales. Poseen integrados que se encarga de repetir las señales de control y direcciones . Las señales de reloj son reconstruidas con ayuda de un integrado PLL que está en el módulo mismo. Las señales de datos pasan directamente del bus de memoria a los integrados de memoria DRAM.

Estas características permiten conectar múltiples módulos de memoria (más de 4) de alta capacidad sin que haya perturbaciones en las señales del controlador de memoria, haciendo posible sistemas con gran cantidad de memoria principal (8 a 16 GB). Con memorias no registradas, no es posible, debido a los problemas surgen de sobrecarga eléctrica a las señales enviadas por el controlador, fenómeno que no sucede con las registradas por estar de algún modo aisladas.

Entre las desventajas de estos módulos están el hecho de que se agrega un ciclo de retardo para cada solicitud de acceso a una posición no consecutiva y por supuesto el precio, que suele ser mucho más alto que el de las memorias de PC. Este tipo de módulos es incompatible con los controladores de memoria que no soportan el modo registrado, a pesar de que se pueden instalar físicamente en el zócalo. Se pueden reconocer visualmente porque tienen un integrado mediano, cerca del centro geométrico del circuito impreso, además de que estos módulos suelen ser algo más altos.


Tarjeta gráfica(placa de video) :

Una placa o tarjeta gráfica, tarjeta de vídeo, tarjeta aceleradora de gráficos o adaptador de pantalla, es una tarjeta de expansión para una computadora, encargada de procesar los datos provenientes de la CPU y transformarlos en información comprensible y representable en un dispositivo de salida, como un monitor o televisor. Las tarjetas gráficas más comunes son las disponibles para las computadoras compatibles con la IBM PC, debido a la enorme popularidad de éstas, pero otras arquitecturas también hacen uso de este tipo de dispositivos.

Es habitual que se utilice el mismo término tanto a las habituales tarjetas dedicadas y separadas como a las GPU integradas en la placa base.

Algunas tarjetas gráficas han ofrecido funcionalidades añadidas como captura de vídeo, sintonización de TV, decodificación MPEG-2 y MPEG-4 o incluso conectores Firewire, de ratón, lápiz óptico o joystick.

Las tarjetas gráficas no son dominio exclusivo de los PC; contaron o cuentan con ellas dispositivos como los Commodore Amiga (conectadas mediante las ranuras Zorro II y Zorro III), Apple II, Apple Macintosh, Spectravideo SVI-328, equipos MSX y, por supuesto, en las videoconsolas modernas, como la Wii, la Playstation 3 y la Xbox360.

Historia :

La historia de las tarjetas gráficas da comienzo a finales de los años 1960, cuando se pasa de usar impresoras como elemento de visualización a utilizar monitores. Las primeras tarjetas sólo eran capaces de visualizar texto a 40x25 u 80x25, pero la aparición de los primeros chips de video como el Motorola 6845 permiten comenzar a dotar a los equipos basados en bus S-100 o Eurocard de capacidades gráficas. Junto con las tarjetas que añadían un modulador de televisión fueron las primeras en recibir el término tarjeta de video.

El éxito del ordenador doméstico y las primeras videoconsolas hacen que por abaratamiento de costes (mayoritariamente son diseños cerrados), esos chips vayan integrados en la placa madre. Incluso en los equipos que ya vienen con un chip gráfico se comercializan tarjetas de 80 columnas, que añadían un modo texto de 80x24 u 80x25 caracteres, principalmente para ejecutar soft CP/M (como las de los Apple II y Spectravideo SVI-328).

Curiosamente la tarjeta de vídeo que viene con el IBM PC, que con su diseño abierto herencia de los Apple II popularizará el concepto de tarjeta gráfica intercambiable, es una tarjeta de sólo texto. La MDA (Monochrome Display Adapter), desarrollada por IBM en 1981, trabajaba en modo texto y era capaz de representar 25 líneas de 80 caracteres en pantalla. Contaba con una memoria de vídeo de 4KB, por lo que sólo podía trabajar con una página de memoria. Se usaba con monitores monocromo, de tonalidad normalmente verde.

VGA tuvo una aceptación masiva, lo que llevó a compañías como ATI, Cirrus Logic y S3 Graphics, a trabajar sobre dicha tarjeta para mejorar la resolución y el número de colores. Así nació el estándar SVGA (Super VGA). Con dicho estándar se alcanzaron los 2 MB de memoria de vídeo, así como resoluciones de 1024 x 768 puntos a 256 colores.

Los competidores del PC, Commodore Amiga 2000 y Apple Macintosh reservaron en cambio esa posibilidad a ampliaciones profesionales, integrando casi siempre la GPU base (que batía en potencia con total tranquilidad a las tarjetas gráficas de los PCs del momento) en sus placas madre. Esta situación se perpetúa hasta la aparición del Bus PCI, que sitúa a las tarjetas de PC al nivel de los buses internos de sus competidores, al eliminar el cuello de botella que representaba el Bus ISA. Aunque siempre por debajo en eficacia (con la misma GPU S3 ViRGE, lo que en un PC es una tarjeta gráfica avanzada deviene en acelerador 3D profesional en los Commodore Amiga con ranura Zorro III), la fabricación masiva (que abarata sustancialmente los costes) y la adopción por otras plataformas del Bus PCI hace que los chips gráficos VGA comiencen a salir del mercado del PC.

La evolución de las tarjetas gráficas dio un giro importante en 1995 con la aparición de las primeras tarjetas 2D/3D, fabricadas por Matrox, Creative, S3 y ATI, entre otros. Dichas tarjetas cumplían el estándar SVGA, pero incorporaban funciones 3D. En 1997, 3dfx lanzó el chip gráfico Voodoo, con una gran potencia de cálculo, así como nuevos efectos 3D (Mip Mapping, Z-Buffering, Antialiasing...). A partir de ese punto, se suceden una serie de lanzamientos de tarjetas gráficas como Voodoo2 de 3dfx, TNT y TNT2 de NVIDIA. La potencia alcanzada por dichas tarjetas fue tal que el puerto PCI donde se conectaban se quedó corto. Intel desarrolló el puerto AGP (Accelerated Graphics Port) que solucionaría los cuellos de botella que empezaban a aparecer entre el procesador y la tarjeta. Desde 1999 hasta 2002, NVIDIA dominó el mercado de las tarjetas gráficas (comprando incluso la mayoría de bienes de 3dfx)[7] con su gama GeForce. En ese período, las mejoras se orientaron hacia el campo de los algoritmos 3D y la velocidad de los procesadores gráficos. Sin embargo, las memorias también necesitaban mejorar su velocidad, por lo que se incorporaron las memorias DDR a las tarjetas gráficas. Las capacidades de memoria de vídeo en la época pasan de los 32 MB de GeForce, hasta los 64 y 128 MB de GeForce 4.

La mayoría de videoconsolas de sexta generación y sucesivos utilizan chips gráficos derivados de los más potentes aceleradores 3D de su momento. Los Apple Macintosh incorporan chips de NVIDIA y ATI desde el primer iMac, y los modelos PowerPC con bus PCI o AGP pueden usar tarjetas gráficas de PC con BIOS no dependientes de CPU.

En 2006, NVIDIA y ATI se repartían el liderazgo del mercado[8] con sus series de chips gráficos GeForce y Radeon, respectivamente.

GPU :

La GPU, —acrónimo de «graphics processing unit», que significa «unidad de procesamiento gráfico»— es un procesador (como la CPU) dedicado al procesamiento de gráficos; su razón de ser es aligerar la carga de trabajo del procesador central y, por ello, está optimizada para el cálculo en coma flotante, predominante en las funciones 3D. La mayor parte de la información ofrecida en la especificación de una tarjeta gráfica se refiere a las características de la GPU, pues constituye la parte más importante de la tarjeta. Dos de las más importantes de dichas características son la frecuencia de reloj del núcleo, que en 2006 oscilaba entre 250 MHz en las tarjetas de gama baja y 750 MHz en las de gama alta, y el número de pipelines (vertex y fragment shaders), encargadas de traducir una imagen 3D compuesta por vértices y líneas en una imagen 2D compuesta por píxeles.

Memoria de vídeo :

Según la tarjeta gráfica esté integrada en la placa base (bajas prestaciones) o no, utilizará la memoria RAM propia del ordenador o dispondrá de una propia. Dicha memoria es la memoria de vídeo o VRAM. Su tamaño oscila entre 128 MB y 4 GB. La memoria empleada en 2006 estaba basada en tecnología DDR, destacando DDR2, GDDR3,GDDR4 y GDDR5. La frecuencia de reloj de la memoria se encontraba entre 400 MHz y 3,6 GHz.

Han conseguido hacer memorias GDDR5 a 7GHZ, gracias al proceso de reducción de 50 nm, permitiendo un gran ancho de banda en buses muy pequeños (incluso de 64 bits)

Una parte importante de la memoria de un adaptador de vídeo es el Z-Buffer, encargado de gestionar las coordenadas de profundidad de las imágenes en los gráficos 3D.

RAMDAC :

El RAMDAC es un conversor de [señal digital|digital] a analógico de memoria RAM. Se encarga de transformar las señales digitales producidas en el ordenador en una señal analógica que sea interpretable por el monitor. Según el número de bits que maneje a la vez y la velocidad con que lo haga, el conversor será capaz de dar soporte a diferentes velocidades de refresco del monitor (se recomienda trabajar a partir de 75 Hz, nunca con menos de 60). Dada la creciente popularidad de los monitores digitales el RAMDAC está quedando obsoleto, puesto que no es necesaria la conversión analógica si bien es cierto que muchos conservan conexión VGA por compatibilidad.

Salidas :

Los sistemas de conexión más habituales entre la tarjeta gráfica y el dispositivo visualizador (como un monitor o un televisor) son:

* DA-15 conector RGB usado mayoritariamente en los Apple Macintosh
* Digital TTL DE-9 : usado por las primitivas tarjetas de IBM (MDA, CGA y variantes, EGA y muy contadas VGA)
* SVGA: estándar analógico de los años 1990; diseñado para dispositivos CRT, sufre de ruido eléctrico y distorsión por la conversión de digital a analógico y el error de muestreo al evaluar los píxeles a enviar al monitor.
* DVI: sustituto del anterior, fue diseñado para obtener la máxima calidad de visualización en las pantallas digitales como los LCD o proyectores. Evita la distorsión y el ruido al corresponder directamente un píxel a representar con uno del monitor en la resolución nativa del mismo.
* S-Video: incluido para dar soporte a televisores, reproductores de DVD, vídeos, y videoconsolas.

Otras no tan extendidas en 2007 son:

* S-Video implementado sobre todo en tarjetas con sintonizador TV y/o chips con soporte de video NTSC/PAL
* Vídeo Compuesto: analógico de muy baja resolución mediante conector RCA.
* Vídeo por componentes: utilizado también para proyectores; de calidad comparable a la de SVGA, dispone de tres clavijas (Y, Cb y Cr).
* HDMI: tecnología de audio y vídeo digital cifrado sin compresión en un mismo cable.


Interfaces con la placa base :

En orden cronológico, los sistemas de conexión entre la tarjeta gráfica y la placa base han sido, principalmente:

* Slot MSX : bus de 8 bits usado en los equipos MSX
* ISA: arquitectura de bus de 16 bits a 8 MHz, dominante durante los años 1980; fue creada en 1981 para los IBM PC.
* Zorro II usado en los Commodore Amiga 2000 y Commodore Amiga 1500.
* Zorro III usado en los Commodore Amiga 3000 y Commodore Amiga 4000
* NuBus usado en los Apple Macintosh
* Processor Direct Slot usado en los Apple Macintosh
* MCA: intento de sustitución en 1987 de ISA por IBM. Disponía de 32 bits y una velocidad de 10 MHz, pero era incompatible con los anteriores.
* EISA: respuesta en 1988 de la competencia de IBM; de 32 bits, 8.33 MHz y compatible con las placas anteriores.
* VESA: extensión de ISA que solucionaba la restricción de los 16 bits, duplicando el tamaño de bus y con una velocidad de 33 MHz.
* PCI: bus que desplazó a los anteriores a partir de 1993; con un tamaño de 32 bits y una velocidad de 33 MHz, permitía una configuración dinámica de los dispositivos conectados sin necesidad de ajustar manualmente los jumpers. PCI-X fue una versión que aumentó el tamaño del bus hasta 64 bits y aumentó su velocidad hasta los 133 MHz.
* AGP: bus dedicado, de 32 bits como PCI; en 1997 la versión inicial incrementaba la velocidad hasta los 66 MHz.
* PCIe: interfaz serie que desde 2004 empezó a competir contra AGP, llegando a doblar en 2006 el ancho de banda de aquel. No debe confundirse con PCI-X, versión de PCI.

Dispositivos refrigerantes :

Debido a las cargas de trabajo a las que son sometidas, las tarjetas gráficas alcanzan temperaturas muy altas. Si no es tenido en cuenta, el calor generado puede hacer fallar, bloquear o incluso averiar el dispositivo. Para evitarlo, se incorporan dispositivos refrigerantes que eliminen el calor excesivo de la tarjeta. Se distinguen dos tipos:

* Disipador: dispositivo pasivo (sin partes móviles y, por tanto, silencioso); compuesto de material conductor del calor, extrae este de la tarjeta. Su eficiencia va en función de la estructura y la superficie total, por lo que son bastante voluminosos.
* Ventilador: dispositivo activo (con partes móviles); aleja el calor emanado de la tarjeta al mover el aire cercano. Es menos eficiente que un disipador y produce ruido al tener partes móviles.

Aunque diferentes, ambos tipos de dispositivo son compatibles entre sí y suelen ser montados juntos en las tarjetas gráficas; un disipador sobre la GPU (el componente que más calor genera en la tarjeta) extrae el calor, y un ventilador sobre él aleja el aire caliente del conjunto.

Alimentación :

Hasta ahora la alimentación eléctrica de las tarjetas gráficas no había supuesto un gran problema, sin embargo, la tendencia actual de las nuevas tarjetas es consumir cada vez más energía. Aunque las fuentes de alimentación son cada día más potentes, el cuello de botella se encuentra en el puerto PCIe que sólo es capaz de aportar una potencia de 150 W. Por este motivo, las tarjetas gráficas con un consumo superior al que puede suministrar PCIe incluyen un conector (PCIe power connector)[13] que permite una conexión directa entre la fuente de alimentación y la tarjeta, sin tener que pasar por la placa base, y, por tanto, por el puerto PCIe.

Aun así, se pronostica que no dentro de mucho tiempo las tarjetas gráficas podrían necesitar una fuente de alimentación propia, convirtiéndose dicho conjunto en dispositivos externos.

Tipos de tarjetas gráficas :

Tarjeta MDA :

Monochrome Display Adapter" o Adaptador monocromo. Fue lanzada por IBM como una memoria de 4 KB de forma exclusiva para monitores TTL (que representaban los clásicos caracteres en ambar o verde). No disponía de gráficos y su única resolución era la presentada en modo texto (80x25) en caracteres de 14x9 puntos, sin ninguna posibilidad de configuración.

Básicamente esta tarjeta usa el controlador de vídeo para leer de la ROM la matriz de puntos que se desea visualizar y se envía al monitor como información serie. No debe sorprender la falta de procesamiento gráfico, ya que, en estos primeros PCs no existían aplicaciones que realmente pudiesen aprovechar un buen sistema de vídeo. Prácticamente todo se limitaba a información en modo texto.

Este tipo de tarjeta se identifica rápidamente ya que incluye (o incluia en su dia) un puerto de comunicación para la impresora ¡Una asociación más que extraña a día de hoy!

Tarjeta CGA :

"Color Graphics Array" o "Color graphics adapter" según el texto al que se recurra. Aparece en el año 1981 también de la mano de IBM y fue muy extendida. Permitia matrices de caracteres de 8x8 puntos en pantallas de 25 filas y 80 columnas, aunque solo usaba 7x7 puntos para representar los caracteres. Este detalle le imposibilitaba el representar subrayados, por lo que los sustituía por diferentes intensidades en el caracter en cuestión.En modo gráfico admitía resoluciones de hasta 640x200. La memoria era de 16 KB y solo era compatible con monitores RGB y Compuestos. A pesar de ser superior a la MDA, muchos usuarios preferian esta ultima dado que la distancia entre puntos de la rejilla de potencial en los monitores CGA era mayor. El tratamiento del color, por supuesto de modo digital, se realizaba con tres bits y uno más para intensidades. Así era posible lograr 8 colores con dos intensidades cada uno, es decir, un total de 16 tonalidades diferentes pero no reproducibles en todas las resoluciones tal y como se muestra en el cuadro adjunto.

Esta tarjeta tenia un fallo bastante habitual y era el conocido como "snow". Este problema era de caracter aleatorio y consistía en la aparición de "nieve" en la pantalla (puntos brillantes e intermitentes que distorsionaban la imagen). Tanto era así que algunas BIOS de la época incluían en su SETUP la opción de eliminación de nieve ("No snow".

Tarjeta HGC :

"Hercules Graphics Card" o más popularmente conocida como Hércules (nombre de la empresa productora), aparece en el año 1982, con gran éxito convirtiéndose en un estandar de vídeo a pesar de no disponer del soporte de las rutinas de la BIOS por parte de IBM. Su resolución era de 720x348 puntos en monocromo con 64 KB de memoria. Al no disponer de color, la única misión de la memoria es la de referenciar cada uno de los puntos de la pantalla usando 30,58 KB para el modo gráfico (1 bit x 720 x 348)y el resto para el modo texto y otras funciones. Las lecturas se realizaban a una frecuencia de 50 HZ, gestionadas por el controlador de vídeo 6845. Los caracteres se dibujaban en matrices de 14x9 puntos.

Fabricantes :
ATI :GECUBE,MSI,SAPPHIRE,ASUS Y GYBABITE
NVIDIA OINT OF VIEW,GALAXY,XFX,ASUS Y ZOTAC
En el mercado de las tarjetas gráficas hay que distinguir dos tipos de fabricantes:

* De chips: generan exclusivamente la GPU. Los dos más importantes son:
o ATI
o NVIDIA
* GPU integrado en el chipset de la placa base: también destaca Intel además de los antes citados NVIDIA y ATI.

Otros fabricantes como Matrox o S3 Graphics tienen una cuota de mercado muy reducida.

* De tarjetas: integran los chips adquiridos de los anteriores con el resto de la tarjeta, de diseño propio. De ahí que tarjetas con el mismo chip den resultados diferentes según la marca.

En la tabla adjunta se muestra una relación de los dos fabricantes de chips y algunos de los fabricantes de tarjetas con los que trabajan.

API para gráficos :

A nivel de programador, trabajar con una tarjeta gráfica es complicado; por ello, surgieron interfaces que abstraen la complejidad y diversidad de las tarjetas gráficas. Los dos más importantes son:

* Direct3D: lanzada por Microsoft en 1996, forma parte de la librería DirectX. Funciona sólo para Windows. Utilizado por la mayoría de los videojuegos comercializados para Windows.
* OpenGL: creada por Silicon Graphics a principios de los años 1990; es gratuita, libre y multiplataforma. Utilizada principalmente en aplicaciones de CAD, realidad virtual o simulación de vuelo. Está siendo desplazada del mercado de los videojuegos por Direct3D.

Efectos gráficos :

Algunas de las técnicas o efectos habitualmente empleados o generados mediante las tarjetas gráficas son:

* Antialiasing: retoque para evitar el aliasing, efecto que aparece al representar curvas y rectas inclinadas en un espacio discreto y finito como son los píxeles del monitor.
* Shader: procesado de píxeles y vértices para efectos de iluminación, fenómenos naturales y superficies con varias capas, entre otros.
* HDR: técnica novedosa para representar el amplio rango de niveles de intensidad de las escenas reales (desde luz directa hasta sombras oscuras).
* Mapeado de texturas: técnica que añade detalles en las superficies de los modelos, sin aumentar la complejidad de los mismos.
* Motion Blur: efecto de emborronado debido a la velocidad de un objeto en movimiento.
* Depth Blur: efecto de emborronado adquirido por la lejanía de un objeto.
* Lens flare: imitación de los destellos producidos por las fuentes de luz sobre las lentes de la cámara.
* Efecto Fresnel (reflejo especular): reflejos sobre un material dependiendo del ángulo entre la superficie normal y la dirección de observación. A mayor ángulo, más reflectante.



¿Que es un hadware?
Definición de Hardware

En computación, término inglés que hace referencia a cualquier componente físico tecnológico, que trabaja o interactúa de algún modo con la computadora. No sólo incluye elementos internos como el disco duro, CD-ROM, disquetera, sino que también hace referencia al cableado, circuitos, gabinete, etc. E incluso hace referencia a elementos externos como la impresora, el mouse, el teclado, el monitor y demás periféricos.

El hardware contrasta con el software, que es intangible y le da lógica al hardware (además de ejecutarse dentro de éste).

El hardware no es frecuentemente cambiado, en tanto el software puede ser creado, borrado y modificado sencillamente. (Excepto el firmware, que es un tipo de software que raramente es alterado).

Hardware típico de una computadora

El típico hardware que compone una computadora personal es el siguiente:

• Su chasis o gabinete
• La placa madre, que contiene: CPU, cooler, RAM, BIOS, buses (PCI, USB, HyperTransport, CSI, AGP, etc)
• Fuente de alimentación
• Controladores de almacenamiento: IDE, SATA, SCSI
• Controlador de video
• Controladores del bus de la computadora (paralelo, serial, USB, FireWire), para conectarla a periféricos
• Almacenamiento: disco duro, CD-ROM, disquetera, ZIP driver y otros
• Tarjeta de sonido
• Redes: módem y tarjeta de red

El hardware también puede incluir componentes externos como:
• Teclado
• Mouse, trackballs
• Joystick, gamepad, volante
• Escáner, webcam
• Micrófono, parlante
• Monitor (LCD, o CRT)
• Impresora

Distintas clasificaciones del hardware

Clasificación por la funcionalidad del hardware

* Hardware básico: dispositivos necesarios para iniciar la computadora. Los más básicos son la placa madre, la fuente de alimentación, el microprocesador y la memoria. Se podrían incluir componentes como monitor y teclado, aunque no son estrictamente básicos.

* Hardware complementario: aquellos dispositivos que complementan a la computadora, pero que no son fundamentales para su funcionamiento, como ser, impresora, unidades de almacenamiento, etc.

Clasificación por la ubicación del hardware

* Periféricos (componentes externos): dispositivos externos a la computadora. Ver periférico
* Componentes internos: dispositivos que son internos al gabinete de la computadora
* Puertos: conectan los periféricos con los componentes internos

Clasificación por el flujo de información del hardware

* Periféricos de salida: monitor, impresora, etc.
* Periféricos de entrada: teclado, mouse, etc.
* Periféricos/dispositivos de almacenamiento: disco duro, memorias, etc.
* Periféricos de comunicación: módem, puertos, etc.
* Dispositivos de procesamiento: CPU, microprocesador, placa madre, etc.


FOTOS!:
PLACA DE VIDEO


PLACA DE RED


PLACA DE AUDIO


PLACA MOTHER



Bueno eso es todo espero que les haya servido ! aclaro que se que me faltaron algunas cosas...gracias por leer este post!
0
0
0
0
0No comments yet