Check the new version here

Popular channels

Multiplicar con los dedos

El contar es tan antiguo en el hombre como lo puede ser el pensar, el hablar y el escribir. Es más, descubrimientos arqueológicos sugieren que quizá la escritura, el lenguaje escrito, sea una derivación del lenguaje numérico. Esta posibilidad, lejos de ser improbable, es lógica, ya que la idea de hacer, digamos, surcos en la arena o en un hueso para contar, es más inmediata que pensar que se puedan representar palabras orales en forma de escritura. Surgiendo, de este modo, el lenguaje escrito como complemento de esos primeros signos que representaban cantidades.


Durante algún tiempo se pensó que existía tribus que no sabían contar más de dos, nombraban a los números como uno, dos y muchos.

Otros pueblos desarrollaron métodos muy elaborados para realizar sus cálculos con un vocabulario muy reducido.

La mayor parte de los sistemas se basaban en el sistema de base 5, 10 o 20. La base 5 fue muy utilizada y muy rara fue la utilización de la base 6 y la base 9. La base 4, quizá por la utilización de los espacios de la mano entre los dedos, y no por los dedos en si.

En muchos idiomas las palabras que significan ‘cinco’ y ‘mano’ son las mismas o poseen una raíz común.

Los Tamanacos, una tribu de América del Sur, usaba la misma palabra para cinco y para ‘una mano entera’. La palabra seis significaba ‘con la otra mano’, siete era ‘dos de la otra mano’ y análogamente para ocho y nueve. El diez era ‘ambas manos’. Del once al catorce los Tamanacos extendían ambas manos y contaban ‘uno del pie’,’ dos del pie’ y así sucesivamente hasta llegar al ‘un pie completo’. El sistema continuaba con el dieciséis expresado como ‘uno del otro pie’ hasta el diecinueve. Veinte era la palabra que los Tamanacos usaban para ‘un indio’ y así ‘dos indios’ significaba cuarenta.

La nomenclatura de los números se basaba en partes del cuerpo humano; actualmente se habla de dígitos que tiene un origen en la palabra latina dedos.

Al parecer fue la necesidad de nombrar los números mayores de cinco lo que obligó a adoptar el sistema en base 10. Sin embargo, hoy en día, generalmente, cuando tocamos los dedos con una mano nombramos los números ordinales primero, segundo, tercero … y cuando simplemente los levantamos estamos nombrando los cardinales uno, dos, tres…

Durante la Edad Media fueron muy pocas personas las que conocían las tablas de multiplicar mayores de cinco. Se usaba un método muy popular que se basaba en el uso del complemento de los número dados relativamente a 10. El complemento de un numero n relativamente a 10 es 10-n.

En este método era frecuente utilizar los dedos de las manos como instrumento de cálculo.

Se asociaba a los dedos de cada mano los números 6,7,8,9 y 10, empezando por el dedo pequeño.



Para multiplicar 7 por 8, se juntan los dedos asociados al 7 y al 8, como se observa en la figura siguiente:



El complemento de 7 está representado por los tres dedos superiores (situados encima de los dedos en contacto) de una mano y el complemento de 8 por los dedos superiores de la otra mano. Los cinco dedos inferiores representan el cinco, o sea, 5 decenas. Al 50 se le suma el producto de los dedos superiores 3×2, es decir 6, dando un total de 50+6=56 que es el resultado.






¿ Cómo es esto posible ?

Al calcular pxq (p,q=6,7,8,9), se juntan p-5 dedos de la mano izquierda y se levantan 10-p dedos. En la mano derecha se juntan q-5 y se levantan 10-q dedos. La suma de los dedos juntos de la mano izquierda con los dedos juntos de la mano derecha representan las decenas, es decir: 10(p-5+q-5). A este resultado se le suma el producto de los dedos que sobran de ambas manos es decir: (10-p)(10-q).

Así el resultado es: 10(p-5+q-5)+(10-p)(10-q) = 10p-5+10q-50+100-10q-10p+pq=pxq

Este método para multiplicar el producto de cualquier par de números comprendidos entre 6 y 10 fue muy usado durante el Renacimiento y hoy en día en ciertas zonas rurales de Europa y de Rusia.

Otro método muy sencillo para calcular la tabla del nueve usando los dedos es el siguiente:

Se asocia a los dedos de cada mano los números del 1 al 10 empezando por el dedo pulgar.



Para saber el resultado se levantan los 10 dedos de las manos, y así, el producto 9xn se ve, bajando el enésimo (n-ésimo) dedo contando desde la izquierda hacia la derecha.

Por ejemplo 9×4, se baja el 4º dedo, quedan 3 dedos levantados antes del dedo que ha bajado seis dedos después. Lo que significa que el resultado es 36.



Lo mismo ocurre con 9×9:




¿Por qué ocurre esto?

Al bajar el dedo n, quedan n-1 dedos levantados a la izquierda, el número de las decenas, y 10-n dedos levantados a la derecha, el número de las unidades. Es decir:

10(n-1)+(10-n)=10n-10+10-n=9xn

que es el resultado que se persigue.

FUENTE


Yo use la del 9todala vida, ylasigo usando y es bastante util
0
0
0
2
0No comments yet