About Taringa!

Popular channels

Ponete las pilas!!!

Antes de empezar un poco de música



Pila Pila

Todo sobre las pilas

Historia.
Alessandro Volta comunica su descubrimiento de la pila a la Royal London Society, el marzo 20 de 1800.
Johann Wilhelm Ritter construyó su acumulador eléctrico en 1803. Como muchos otros que le siguieron, era un prototipo teórico y experimental, sin posible aplicación práctica.
En 1860 Gaston Planté construyó el primer modelo de acumulador de plomo-ácido con pretensiones de ser un aparato utilizable, lo que no era más que muy relativamente, por lo que no tuvo éxito. A finales del siglo XIX sin embargo la electricidad se iba convirtiendo rápidamente en artículo cotidiano y cuando Planté volvió a explicar públicamente las características de su acumulador en 1879 tuvo una acogida mucho mejor, de modo que comenzó a ser fabricado y utilizado casi inmediatamente, iniciándose un intenso y continuado proceso de desarrollo para perfeccionarlo y soslayar sus deficiencias, proceso que dura hasta nuestros días.
Thomas Alva Edison inventó en 1900 otro tipo de acumulador con electrodos de hierro y níquel, cuyo electrolito es la potasa cáustica (KOH). Empezaron a comercializarse en 1908 y son la base de los actuales modelos alcalinos, ya sean recargables o no.
También hacia 1900 Junger y Berg descubrieron en Suecia el acumulador Ni-Cd, que utiliza ánodos de cadmio en vez de hierro, siendo muy parecido al de ferroníquel en las restantes características.




Baterías:

Principios de funcionamiento
El funcionamiento de un acumulador está basado esencialmente en algún tipo de proceso reversible, es decir, un proceso cuyos componentes no resulten consumidos ni se pierdan, sino que meramente se transformen en otros, que a su vez puedan retornar al estado primero en las circunstancias adecuadas. Estas circunstancias son, en el caso de los acumuladores, el cierre del circuito externo, durante el proceso de descarga, y la aplicación de una corriente, igualmente externa, durante el de carga.
Resulta que procesos de este tipo son bastante comunes, por extraño que parezca, en las relaciones entre los elementos químicos y la electricidad durante el proceso denominado electrólisis y en los generadores voltaicos o pilas. Los investigadores del siglo XIX dedicaron numerosos esfuerzos a observar y a esclarecer este fenómeno, que recibió el nombre de polarización.
Un acumulador es así un dispositivo en el que la polarización se lleva a sus límites alcanzables y consta en general de dos electrodos, del mismo o de distinto material, sumergidos en un electrolito.

Tipos de acumuladores
Por lo que a su naturaleza interna se refiere, se encuentran habitualmente en el comercio acumuladores de los siguientes tipos:
Acumulador de plomo
Está constituido por dos electrodos de plomo que, cuando el aparato está descargado, se encuentra en forma de sulfato de plomo (PbSO4 II) incrustado en una matriz de plomo metálico (Pb); el electrolito es una disolución de ácido sulfúrico. Este tipo de acumulador se sigue usando aún en muchas aplicaciones, entre ellas en los automóviles. Su funcionamiento es el siguiente:
Durante el proceso de carga inicial el sulfato de plomo (II) es reducido a plomo metal en el polo negativo, mientras que en el ánodo se forma óxido de plomo (IV) (Pb O2). Por lo tanto se trata de un proceso de dismutación. No se libera hidrógeno, ya que la reducción de los protones a hidrógeno elemental está cinéticamente impedida en una superficie de plomo, característica favorable que se refuerza incorporando a los electrodos pequeñas cantidades de plata. El desprendimiento de hidrógeno provocaría la lenta degradación del electrodo, ayudando a que se desmoronasen mecánicamente partes del mismo, alteraciones irreversibles que acortan la duración del acumulador.
Durante la descarga se invierten los procesos de la carga. El óxido de plomo(IV) es reducido a sulfato de plomo (II) mientras que el plomo elemental es oxidado para dar igualmente sulfato de plomo (II). Los electrones intercambiados se aprovechan en forma de corriente eléctrica por un circuito externo. Se trata por lo tanto de una conmutación. Los procesos elementales que trascurren son los siguientes:
PbO2 + 2 H2SO4 + 2 e- -> 2 H2O + PbSO4 + SO42-
Pb + SO42- -> PbSO4 + 2 e-
En la descarga baja la concentración del ácido sulfúrico porque se crea sulfato de plomo y aumenta la cantidad de agua liberada en la reacción. Como el ácido sulfúrico concentrado tiene una densidad superior al ácido sulfúrico diluido, la densidad del ácido puede servir de indicador para el estado de carga del dispositivo.
No obstante, este proceso no se puede repetir indefinidamente porque, cuando el sulfato de plomo forma cristales muy grandes, ya no responden bien a los procesos indicados, con lo que se pierde la característica esencial de la reversibilidad. Se dice entonces que el acumulador se ha sulfatado y es necesario sustituirlo por otro nuevo.
Los acumuladores de este tipo que se venden actualmente utilizan un electrolito en pasta, que no se evapora y hace mucho más segura y cómoda su utilización.

Batería alcalina
También denominada de ferroníquel; sus electrodos son láminas de acero en forma de rejilla con panales rellenos de óxido niqueloso (NiO), que constituyen el electrodo positivo, y de óxido ferroso (FeO) el negativo, estando formado el electrolito por una disolución de potasa cáustica (KOH). Durante la carga se produce un proceso de oxidación anódica y otro de reducción catódica, transformándose el óxido niqueloso en niquélico y el óxido ferroso en hierro metálico. Esta reacción se produce en sentido inverso durante la descarga.
En 1866 George Leclanché, inventa en Francia la “pila seca” (Zinc-Dióxido de Manganeso); sistema que aún domina el mercado mundial de las baterías primarias. Las pilas alcalinas (de “alta potencia” o “larga vida”) son similares a las de Leclanché pero, en vez de cloruro de amonio, llevan cloruro de sodio o de potasio. Duran más porque el cinc no está expuesto a un ambiente ácido como el que provocan los iones amonio en la pila convencional. Como los iones se mueven más fácilmente a través del electrolito, produce más potencia y una corriente más estable.
Su mayor costo se deriva de la dificultad de sellar las pilas contra las fugas de hidróxido. Casi todas vienen blindadas, lo que impide el derramamiento de los constituyentes. Sin embargo, este blindaje no tiene duración ilimitada. Las celdas secas alcalinas son similares a las celdas secas comunes, con excepción de que:
el electrolito es básico (alcalino), porque contiene KOH
la superficie interior del recipiente de Zn es áspera; esto proporciona un área de contacto mayor.
Las baterías alcalinas tienen una vida media mayor que la de las celdas secas comunes y resisten mejor el uso constante.
El voltaje de una pila alcalina es cercano a 1,5 v. Durante la descarga, las reacciones en la celda seca alcalina son:
Zn(OH)2(s) +2 e-®Ánodo: Zn(S) + 2 OH- (ac)
2MnO (OH) (s) + 2 OH-(ac)®Cátodo: 2 MnO2 (S) + 2 H2 O (l) + 2 e-
Zn(OH)2(ac) + 2MnO (OH) (s)®Global: Zn(s) +2 MnO2 (s) 2H2O(l)
El ánodo está compuesto de una pasta de zinc amalgamado con mercurio (total 1%), carbono o grafito.
Se utilizan para aparatos complejos y de elevado consumo energético. En sus versiones de 1,5 voltios, 6 voltios y 12 voltios se emplean, por ejemplo, en mandos a distancia (control remoto) y alarmas.

Baterías alcalinas de manganeso
Con un contenido de mercurio que ronda el 0,1% de su peso total. Es una versión mejorada de la pila anterior en la que se ha sustituido el conductor iónico cloruro de amonio por hidróxido potásico (de ahí su nombre de alcalina). El recipiente de la pila es de acero y la disposición del zinc y del óxido de manganeso (IV) es la contraria, situándose el zinc, ahora en polvo, en el centro. La cantidad de mercurio empleada para regularizar la descarga es mayor. Esto le confiere mayor duración, más constancia en el tiempo y mejor rendimiento. Por el contrario su precio es más elevado. También suministra una fuerza electromotriz de 1,5 V. Se utiliza en aparatos de mayor consumo como: grabadoras portátiles, juguetes con motor, flashes electrónicos.
El ánodo es de zinc amalgamado y el cátodo es un material polarizador que es en base a dióxido de manganeso, óxido mercúrico mezclado íntimamente con grafito, y en casos extraños oxido de plata Ag2O (estos dos últimos son de uso muy costoso, peligrosos y tóxicos) a fin de reducir su resistividad eléctrica. El electrolito es una solución de hidróxido potásico (KOH), el cual presenta una resistencia interna bajísima, lo que permite que no se tengan descargas internas y la energía pueda ser acumulada durante mucho tiempo. Este electrolito en las pilas comerciales es endurecido con gelatinas o derivados de la celulosa.
Este tipo de pila se fabrica en dos formas. En una, el ánodo consta de una tira de zinc corrugada devanada en espiral de 0.051 a 0.13 mm de espesor que se amalgama después de armarla. Hay dos tiras de papel absorbente resistente a los álcalis ínter devanadas con la tira de papel de zinc, de modo que el zinc sobresalga por la parte superior y el papel por la parte inferior. El ánodo está aislado de la caja metálica con un manguito de poliestireno. La parte superior de la pila es de cobre y hace contacto con la tira de zinc para formar la Terminal negativa de la pila. La pila está sellada con un ojillo o anillo aislante hecho de neopreno. La envoltura de la pila es químicamente inerte a los ingredientes y forma el electrodo positivo
Alcalinas
Zinc 14% (ánodo) Juguetes, tocacintas, cámaras fotográficas, grabadoras
Dióxido de Manganeso 22% (cátodo)
Carbón: 2%
Mercurio: 0.5 a 1% (ánodo)
Hidróxido de Potasio (electrolito)
Plástico y lámina 42%
Contiene un compuesto alcalino, llamado Hidróxido de Potasio. Su duración es seis veces mayor que las de zinc-carbono. Está compuesta por Dióxido de Manganeso, Hidróxido de Potasio, pasta de Zinc amalgamada con Mercurio (en total 1%), Carbón o Grafito. Según la Directiva Europea del 18 de marzo de 1991, este tipo de pilas no pueden superar la cantidad de 0.025% de mercurio.
Este tipo de baterías presenta algunas contras:
Una pila alcalina puede contaminar 175.000 litros de agua, que llega a ser el consumo promedio de agua de toda la vida de seis personas.
Una pila común, también llamadas de zinc-carbono puede contaminar 3.000 litros de agua.
Perforaciones del tabique nasal.
Zinc, Manganeso, Bismuto, Cobre y Plata: Son sustancias tóxicas, que producen diversas alteraciones en la salud humana. El Zinc, Manganeso y Cobre son esenciales para la vida, en cantidades mínimas, tóxico en altas dosis. El Bismuto y la Plata no son esenciales para la vida.

Baterías Níquel-Hidruro (Ni-H)
Utilizan un ánodo de hidróxido de níquel y un cátodo de una aleación de metal-hidruro. Cada célula de Ni-H puede proporcionar un voltaje de 1,2 V y una capacidad entre 0,8 y 2,3 Ah. Su densidad de energía llega a los 80 Wh/kg. Este tipo de baterías se encuentran afectadas por el llamado efecto memoria: en el que en cada recarga se limita el voltaje o la capacidad (a causa de un tiempo largo, una alta temperatura, o una corriente elevada), imposibilitando el uso de toda su energía.

Baterías Níquel-Cadmio (Ni-Cd)
Utilizan un ánodo de hidróxido de níquel y un cátodo de un compuesto de cadmio. El electrolito es de hidróxido de potasio. Esta configuración de materiales permite recargar la batería una vez está agotada para su reutilización. Cada célula de NiCd puede proporcionar un voltaje de 1,2 V y una capacidad entre 0,5 y 2,3 Ah. Sin embargo, su densidad de energía es de tan sólo 50 Wh/kg, lo que hace que tengan que ser recargadas cada poco tiempo. También se ven afectadas por el efecto memoria.

Baterías Litio-Ion (Li-ion)
Las Baterías Litio-Ion (Li-ion) utilizan un ánodo de Litio y un cátodo de Ion. Su desarrollo es más reciente, y permite llegar a densidades del orden de 115 Wh/kg. Además, no sufren el efecto memoria.

Baterías Polímero de Litio (Li-poli)
Son una variación de las Baterías Litio-Ion (Li-ion). Sus características son muy similares pero permiten una mayor densidad de energía, así como una tasa de descarga bastante superior.

Pilas de combustible
La pila de combustible no se trata de acumulador propiamente dicho aunque sí convierte energía química en energía eléctrica y es recargable. Funciona con hidrógeno. (Otros combustibles como el Metano o el Metanol son transformados previamente en hidrógeno).

Condensador de alta capacidad
Aunque los condensadores de alta capacidad no sean acumuladores electroquímicos en sentido estricto, en la actualidad se están consiguiendo capacidades lo suficientemente grandes (varios faradios, F) para que se los pueda utilizar como batería cuando las potencias a suministrar sean pequeñas.

Parámetros de un acumulador
La tensión o potencial (en voltios) es el primer parámetro a considerar, pues es el que suele determinar si el acumulador conviene al uso a que se le destina. Viene fijado por el potencial de reducción del par redox utilizado; suele estar entre 1 V y 4 V por elemento.
La corriente que puede suministrar el elemento, medida en ampere (A), es el segundo factor a considerar. Especial importancia tiene en algunos casos la corriente máxima obtenible; p. ej., los motores de arranque de los automóviles exigen esfuerzos brutales de la batería cuando se ponen en funcionamiento (decenas de A), por lo que deben actuar durante poco tiempo.
La capacidad eléctrica se mide en la práctica por referencia a los tiempos de carga y de descarga en Ah. La unidad SI es el coulomb (C).
1 Ah = 1000 mAh = 3600 C; 1 C = 1 Ah/3600 = 0,278 mAh.
Téngase en cuenta sin embargo que, cuando a veces le den indicaciones en el cuerpo de las baterías o en sus envases como Cárguese a C/10 durante 12 horas, la letra C no se refiere al coulomb, sino a la carga máxima que puede recibir el acumulador, de modo que en el caso anterior, si la capacidad del acumulador fuesen 1200 mAh, se le debería aplicar una corriente de carga de 1200/10 = 120 mA durante el número de horas indicado.
La energía almacenada se mide habitualmente en Wh (watt-hora); la unidad SI es el joule (unidad).
1 Wh = 3600 J = 3,6 kJ ; 1 J = 0,278 mWh
La resistencia de los acumuladores es muy inferior a la de las pilas, lo que les permite suministrar cargas mucho más intensas que las de éstas, sobre todo de forma transitoria. Por ejemplo, la resistencia interna de un acumulador de plomo-ácido es de 0,006 ohm y la de otro de Ni-Cd de 0,009 ohm.
En fin, otra de las características importantes de un acumulador es su masa, es decir, lo que pesa, y la relación entre ella y la capacidad eléctrica (Ah/kg) o la energía (Wh/kg) que puede restituir. En algunos casos puede ser también importante el volumen que ocupe (en m3 o en litro).
El rendimiento es la relación porcentual entre la energía eléctrica recibida en el proceso de carga y la que el acumulador entrega durante la descarga. El acumulador de plomo-ácido tiene un rendimiento de más del 90%.

Electrolisis: El fenómeno de la electrólisis fue descubierto en 1820 por el físico y químico inglés Michael Faraday. Consiste en la descomposición mediante una corriente eléctrica de sustancias ionizadas denominadas electrolitos. La palabra electrólisis procede de dos radicales, electro que hace referencia a electricidad y lisis que quiere decir ruptura. El proceso electrolítico consiste en lo siguiente:
Se funde o se disuelve el electrolito en un determinado disolvente, con el fin de que dicha sustancia se separe en iones (ionización).
Se aplica una corriente eléctrica continua mediante un par de electrodos conectados a una fuente de alimentación eléctrica y sumergidos en la disolución. El electrodo conectado al polo negativo se conoce como cátodo, y el conectado al positivo como ánodo.
Cada electrodo atrae a los iones de carga opuesta. Así, los iones positivos, o cationes, son atraídos al cátodo, mientras que los iones negativos, o aniones, se desplazan hacia el ánodo



PILAS:

Principios de funcionamiento
El agua que tenga sales disueltas, es decir, agua ordinaria o agua con sal añadida, es un ejemplo de electrolito, pues el agua pura es prácticamente un aislante eléctrico. El electrolito es conductor porque contiene iones libres, partículas dotadas de carga eléctrica que pueden desplazarse por su interior. Si se sumergen en él dos electrodos y se hace pasar una corriente eléctrica por el circuito así formado, se producen reacciones químicas entre las sustancias del conjunto. Este proceso es el conocido fenómeno de la electrolisis. Las pilas son el proceso inverso de la electrólisis, es decir, en ellas los elementos están dispuestos de tal modo que la reacción química que se produce entre sus constituyentes cuando se cierra el circuito genere una diferencia de potencial en los electrodos, de modo que se pueda suministrar corriente eléctrica a una carga externa.
El funcionamiento de una pila se basa en el potencial de contacto entre un metal y un electrolito, esto es, el potencial que se produce al poner en contacto un metal con un líquido.

Así, al introducir una placa de zinc (Zn) en agua, el zinc se disuelve algo en forma de iones Zn++ que pasan al líquido; esta emisión de iones hace que la placa adquiera una carga negativa respecto al líquido, pues tiene ahora un exceso de electrones, creándose entre ambos una diferencia de potencial. Los iones que están en el líquido ejercen una presión que se opone a la continuación de la disolución, la cual se detendrá cuando se alcance un valor determinado, llamado tensión de disolución. Cuando se cierra el circuito externo, los electrones del zinc retornan a través de él al polo opuesto, mientras que en el interior del electrolito se reanuda la corriente de iones que circula en sentido contrario. La imagen precedente muestra el esquema electroquímico de una celda Daniell, que se describe luego con más detalle —incidentalmente, obsérvese que las denominaciones de ánodo y cátodo se utilizan sobre la base del flujo de electrones por el circuito externo y no en el sentido habitual, según el cual la corriente va del polo positivo al negativo.

Capacidad total
La capacidad total de una pila se mide en amperios x hora (A·h); es el número máximo de amperios que el elemento puede suministrar en una hora. Es un valor que no suele conocerse, ya que no es muy esclarecedor dado que depende de la intensidad solicitada y la temperatura. Cuando se extrae una gran corriente de manera continuada, la pila entrega menos potencia total que si la carga es más suave. También en esto las pilas alcalinas son mejores. Una de tipo D tiene una capacidad de entre 9 Ah —con una carga de 1 A— y 12 Ah —con una carga de 1 mA—, mientras que los correspondientes valores para una de carbón-zinc son 1 y 7,5, respectivamente.

Dependencia de la temperatura
Como todas las reacciones químicas, las que se producen dentro de una pila son sensibles a la temperatura, acelerándose normalmente cuando ésta aumenta, lo que se traducirá en un pequeño aumento de la tensión. Más importante es el caso de la bajada, pues cuando se alcanzan las de congelación muchas pilas pueden dejar de funcionar o hacerlo defectuosamente, cosa que suelen advertir los fabricantes. Como contrapartida, si se almacenan las pilas refrigeradas, se prolongará su buen estado.

Duración fuera de servicio
Lo ideal sería que las reacciones químicas internas no se produjeran más que cuando la pila esté en servicio, pero la realidad es que las pilas se deterioran por el mero transcurso del tiempo, aunque no se usen, pues los electrodos resultan atacados en lo que se conoce con el nombre de acción local. Puede considerarse que una pila pierde unos 6 mV por mes de almacenamiento, influyendo mucho en ello la temperatura. Actualmente esto no constituye un problema serio pues, dado el enorme consumo que hay de los tipos corrientes, las que se ofrecen en el comercio son de fabricación reciente. Algunos fabricantes han empezado a imprimir en los envases la fecha de caducidad del producto, lo que es una práctica encomiable.



Clasificación:


Las pilas se pueden dividir en dos tipos principales de estas, primarias o secundarias. Una pila primaria produce energía consumiendo algún químico que esta contiene. Cuando este se agota, la pila ya no produce mas energía y debe ser reemplazada. Por ejemplo en este grupo encontramos a las pilas de zinc-carbono.
Las pilas secundarias, o pilas de almacenamiento, obtienen su energía transformando alguno de sus químicos en otro tipo de químicos. Cuando el cambio es total, la pila ya no produce mas energía. Sin embargo, esta puede ser recargada mandando una corriente eléctrica de otra fuente a través de ella para así poder volver a los químicos a su estado original. Un ejemplo de este grupo es la batería de auto o pila de ácido-plomo.
Nombrando los tipos de pilas debemos mencionar las pilas experimentales, estas aunque aun se pueden clasificar en alguno de estos dos grupos, deben mencionarse aparte ya que son hechas a pedido y responden a necesidades especificas. Por ejemplo, una pila que deba alimentar a radiotransmisor en una región montañosa en una central autónoma, este tipo de pilas debería poder soportar grandes periodos de tiempo, ser muy confiable y probablemente soportar temperaturas extremas. O el claro ejemplo de las pilas usadas en los transbordadores espaciales ya que estas no pueden ser reemplazadas luego del lanzamiento.


Pilas primarias:
Sistema de dióxido de Zinc-Manganeso: Este es el tipo más usado de pilas en el mundo. Su usos típicos son, linternas, juguetes, walkmans, etc... Hay tres variantes para este tipo de pila: la pila Leclanché, la pila de cloruro de zinc, y la pila alcalina. Todas entregan un voltaje inicial de 1.58 a 1.7 volts, el cual declina con el uso hasta un punto de 0.8 volts aprox. La pila Leclanché es la más económica de estas, fue inventada en 1866 por un ingeniero francés (la pila lleva su nombre Charles Leclanché). Se convirtió en un éxito instantáneo debido a su constituyentes de bajo presupuesto. El ánodo de este tipo de pila es una hoja de aleación de zinc, esta aleación contiene pequeñas cantidades de; plomo, cadmio y mercurio. El electrolito consiste en una solución acuosa y saturada de cloruro de amonio conteniendo 20% de cloruro de zinc. El cátodo esta compuesto de dióxido de manganeso impuro, mezclado con carbón granulado, para creas un cátodo húmedo con un electrodo de carbón.
Aunque fue patentada en 1899 la pila de cloruro de zinc es realmente una adaptación moderna a la pila de Leclanché. La gran diferencia esta en que gracias a sellados de plástico esta pila a podido terminar con el uso de cloruro de amonio. También el dióxido de manganesos de alta pureza. Este tipo de pila tiene una más larga duración que la pila de Leclanché. También esta pila puede traer confiabilidad satisfactoria sin usar mercurio en la aleación de zinc.
La más alta densidad energética (wats por cm cubico) de las pilas de zinc-manganeso se puede encontrar en pilas con un electrolito alcalino el cual permite una construcción completamente distinta al resto de su tipo. Esta estuvieron disponibles comercialmente durante la década de los 50. El cátodo de un dióxido-grafito de manganeso muy puro y un ánodo de una aleación de zinc enriquecida son asociados con un electrolito de hidróxido de potasio y puesto en una lata de acero. Aunque el mercurio contenido en la aleación de zinc solía ser de hasta un 6 a 8 porciento, actualmente se ha logrado reducir este índice a un impresionante 0.15%, para así poder reducir el impacto ambiental que estas producen. Esta de más decir que este tipo de pila es altamente superior a ambas de las descritas anteriormente.

Pilas de dióxido de manganeso-magneseo:
Este sistema funciona bien para aplicaciones especializadas. Se parece mucho a la pila de cloruro de zinc pero tiene 0.3 volts mas por pila. Las pilas de dióxido de manganeso-magneseo tienen una larga vida, alta densidad energética, son livianas las cuales las hacen ideales para el uso de pilas para el poder de los radiotransmisores de las radios militares. Una desventaja de este tipo de pila es su funcionamiento en bajas temperaturas.
Pilas de mercurio con óxido-zinc:
Este sistema ocupa un electrolito alcalino. Ha sido largamente usada para el uso en pilas “botón” o las comúnmente usadas para relojes etc... Tienen una densidad energética de aproximadamente 4 veces mas que las pilas de zinc-manganeso. Es muy confiable y da casi siempre 1.35 volts, y gracias a esto se usa como una pila de referencia.

Pilas de plata con óxido-zinc:
Otra pila de tipo alcalina. Esta pila exhibe un cátodo de oxido de plata y un ánodo de polvo de zinc. Debido a que puede relativamente soportar altas cargas y tiene una casi constante, 1.5 volts de producción, este tipo de pila también es usado frecuentemente en relojes etc... También podemos encontrarla en algunos torpedos de uso militar, debido a su gran fiabilidad y capacidad.

Pilas de Litio:
El área de investigación de las pilas que ha atraído mas la investigación en los últimos años ha sido el área de las pilas con un ánodo de litio. Debido a su alta actividad química se deben usar electrolitos no acuosos como por ejemplo sales cristalinas. Se han hecho pilas que no tienen separación alguna entre el ánodo y el cátodo liquido, algo imposible con pilas de sistema acuoso. Una capa protectora se forma automáticamente en el litio, pero esta se rompe en la descarga permitiendo voltajes cercanos a los 3.6 volts. Esto permite una gran densidad energética. Sus usos varían desde la aeronáutica, marcapasos a cámaras automáticas.

Pilas de sulfuro Litio-hierro:
Estas pilas en porte miniatura ofrecen grandes capacidades y bajo costo. En operaciones que requieren de 1.5 a 1.8 volts, estas pueden ser un substituto a algunos tipos de pilas alcalinas.

Pilas de dióxido de litio-manganeso: Estas poco a poco van ganando aceptación. Tienen un voltaje de 2.8 volts, una alta densidad energética y un costo bajo dentro de las pilas de litio.
Pilas de monofluoruro de litio-carbono:
Estas han sido una de las pilas de litios mas comercialmente exitosas, de larga vida, alta densidad energética, buena adaptación a temperaturas y con un voltaje de 3.2 volts. Sin embargo, el costo de monofluoruro de carbono es alto.

Pilas de Litio-thionyl (lithium-thionyl): este tipo de pila provee la más alta densidad energética disponible comercialmente. El cloruro de thionyl no sirve solo como un solvente del electrolito sino que también como material del cátodo. Su funcionamiento es impresionante, ya sea a temperatura ambiente o hasta -54 grados celcius, por muy debajo del punto donde sistemas líquidos dejan de funcionar. Su uso va de equipos militares, vehículos aerospaciales hasta los famosos beepers.

Pilas de dióxido de litio-sulfuro: Este tipo de pila ha sido extensivamente usado en los sistemas de energía de emergencia de muchos aviones entre otros usos. El cátodo consiste en un gas bajo presión con otro químico como electrodo salino; muy parecido al funcionamiento del sistema anterior. Este sistema funciona increíblemente bien, pero se ha encontrado que aveces luego de su uso en frío libera gases tóxicos tales como dióxido de sulfuro.

Pilas de aire-depolarizado.
Una manera muy practica de obtener alta densidad energética es usar el oxigeno en el aire como “liquido” del material del cátodo. Si es juntado con un ánodo tal como el zinc, larga vida a bajo costo, pueden ser obtenidos. La pila, eso sí, debe ser construida de manera tal de que el oxigeno no entre en contacto con el ánodo, el cual atacaría.

Pilas de zinc-aire:
El diseño y principio de estas pilas es relativamente simple, pero su construcción no lo es, ya que el electrodo de aire debe ser extremadamente delgado. Se han hecho muchos estudios y grandes avances se han hecho en el aire del sellado del aire y la optimización de este tipo de pilas.

Pilas de aluminio-aire:
Estas no han tenido una gran aceptación comercial, pero su pequeñísimo peso y su gran densidad energética potencial han hecho que grandes estudios se hayan llevado acabo en esta área, tales como prolongar la vida de esta pila entre otros. Si estos problemas son resueltos podríamos ver grandes aplicaciones para este tipo de pilas en el futuro, incluidos su uso en autos eléctricos o incluso camiones.

Existen muchos otros tipos de pilas primarias usadas a más pequeña escala por ejemplo pilas de las cuales se sabe su rendimiento exacto como la pila de zinc-mercurio o sulfato-mercurio (1.434 volts) o las pilas de cadmio-mercurio o sulfato-mercurio (1.019 volts). O pilas tal como las de cloruro de magneseo-plata o cloruro de magneseo-plomo las cuales se ocupan en las operaciones submarinas donde el electrolito es el agua salina en el cual se encuentran sumergidas las pilas.

Pilas secundarias:

También llamadas pilas de almacenamiento.

Pilas de ácido-plomo:
Este tipo de pila ha sido la pila recargable mas ampliamente usada en el mundo. La mayoría de este tipo de pilas son construidas de planchas de plomo o celdas, donde una de estas, el electrodo positivo, esta cubierto con dióxido de plomo en una forma cristalina entre otros aditivos. El electrolito esta compuesto de ácido sulfúrico, y este participa en las reacciones con los electrodos donde sulfato de plomo es formado y lleva corriente en forma de iones. Estudios demuestran que la pila de plomo-ácido tiene una densidad energética de aproximadamente 20 veces mayor que la de las pilas de niquel-cadmio o niquel-hierro.
La razón por la cual este tipo de pila ha sido tan exitosa es que tiene un gran rango de entregar gran o poca corriente; una buena vida de ciclo con una gran fiabilidad para cientos de ciclos, facilidad de recargar, su bajo costo en comparación al resto de las recargables, alto voltaje (2.04 volts por celda), facilidad de fabricación y la facilidad de salvataje de sus componentes.

Pilas alcalinas de almacenamiento:
En las pilas de almacenamiento de este tipo la energía es derivada de la reacción química en una solución alcalina. Este tipo de pilas usan diversos materiales como electrodos tal como los que nombraremos a continuación.

Pilas de hidróxido de niquel-cadmio:
Estas son las pilas portátiles más comunes que existen. Tienen la característica de poder dar corrientes excepcionalmente altas, pueden ser rápidamente cargadas cientos de veces, son tolerantes al abuso de sobrecarga. Sin embargo, comparadas con otros tipos de pila primarias e incluso con otras de su tipo, estas pilas son pesadas y tienen una limitada densidad energética. Estas pilas funcionan mejor si es que son dejadas a descargarse completamente antes de cargarse nuevamente, sino puede producirse un fenómeno conocido como el efecto de la memoria donde las celdas se comportan como si estas tuvieran menos capacidad para la cual fueron hechas. Su uso es muy variado podemos encontrarlas desde los sistemas de partida para los motores de un avión hasta en el walkman que uno esta usando. Este tipo de pila se comporta bien bajo temperaturas frías.

Pilas de hidróxido de niquel-zinc: están bajo investigación y si su vida puede ser alargada podrían ser un viable substituto para las pilas de niquel-cadmio.

Pilas de hidróxido de niquel-hierro: este tipo de pilas puede proveer miles de ciclos, pero no al recargar necesitan mucha energía y al funcionar se calientan mas de lo deseado.

Pilas de hidróxido de niquel-hidrógeno:
Estas pilas fueron desarrolladas principalmente para el programa espacial de los EE.UU. Los estudios demuestran que aleaciones de niquel pueden reversiblemente disolver o soltar hidrógeno en proporcionalmente a cambios en la presión y temperatura. Este hidrogeno serviría como un material de ánodo. Hay especulación de que este tipo de pila podría reemplazar a la de niquel-cadmio en alguna aplicaciones.

Pilas alcalinas recargables de dióxido de zinc-manganeso: Este tipo de pilas fueron diseñadas para actuar como substitutos en sistemas donde se requieran cantidades moderadas de energía. Su gran densidad energética y su bajo costo incitan a mas estudios.

Pilas de oxido de plata-zinc:
Aunque son caras, estas pilas son usadas cuando la densidad energética, el tamaño, y el peso son fundamentales. Después de años de que su uso fue restringido a minas y torpedos su uso se ha ido diversificando hasta llegar a la exploración submarina y sistemas de comunicaciones.

Pilas secundarias (o de almacenamiento) de litio:
Este tipo de pila muestra una gran promesa a futuro ya que su energía teóricamente va de 600 a 2,000 wats por hora por kg. Algunos elementos con los cuales se investiga son: disulfito de litio-titanio, dióxido de litio-manganeso y disulfito de litio-molibdeno.

Pilas secundarias (o de almacenamiento) de sodio-sulfuro:
Mucha experimentación se ha llevado a cabo con este tipo de pila que funciona al rededor de los 350 grados C'. Aun se deben resolver bastantes problemas relativo a su estabilidad. Especialmente cuando se toma en cuenta que necesita ser enfriada y calentada entre usos. Pero su economía y la entrega de 2.3 volts hacen que este sistema sea extremadamente atractivo, especialmente en el área de los automóviles eléctricos.



VENTAJAS Y DESVENTAJAS DE LAS PILAS.-


Hoy en día, las pilas ya son parte de nuestro diario vivir. Siempre usamos aparatos de nuestra vida cotidiana que usan pilas o están relacionados con una.
Además, la tecnología nos ha servido cada vez mas para poder crear pilas de mayor duración y efectividad para que así cumplan su objetivo en mejor forma.
Las pilas son tan usadas en nuestra vida diaria que su desaparición significarían desde que alguien no despertara debido a que no le sonó el despertador hasta la muerte de alguien que usaba marcapasos.
Por ejemplo, hoy en día la computación cada día está más avanzada y más interiorizada en la sociedad. Pero ¿qué sería de un computador sin pila? No podríamos ni siquiera prenderlo ya que al hacerlo, no sabría que hacer ni que programa ejecutar ya que esa memoria que es almacenada gracias a la pila, se habría perdido. O la información que guardamos en el disco duro desaparecería ya que éste necesita una pila también.
Otra ventaja de la pila, es la posibilidad que le ha dado a millones de personas de seguir viviendo, ya que un marcapaso está compuesto por una pila, y es precisamente de esa pila de lo que depende la vida de aquella persona.
Ejemplos de ventajas de las pilas más banales, pero no por eso menos importantes, sería fijarse en cuantos de los aparatos de los que usamos a diario usan pilas. No podríamos tener relojes, radios, televisores, otros aparatos portátiles, en fin una serie de aparatos con los cuales ya estamos acostumbrados a vivir.
Pero creemos que lo importante de las ventajas y desventajas de las pilas, es nombrar en este trabajo las desventajas con sus soluciones ya que frecuentemente son menos conocidas y no preocupantes. Las ventajas en general siempre se tienen en cuenta.
Las pilas no son inofensivas. Lo mejor es saber distinguir entre los distintos tipos de pilas que hay en el mercado y cuales son sus "contraindicaciones".
En general, se venden 5 tipos de pilas no "recargables" compuestas por los siguientes minerales:
1- carbón - zinc
2- alcalinas
3- cloruro de zinc
4- óxido de plata
5- óxido de mercurio
Las dos primeras son las más comunes; las usamos para radios, linternas, "walk-man", etc.
Ambas contienen diferentes porcentajes de mercurio. Las otras tres también se venden mucho y son las baterías, botón de los relojes, calculadoras, cámaras de fotos. El porcentaje de óxido de mercurio en éstas puede llegar al 50% de su peso total. En ambos grupos existe un elemento altamente contaminante: el mercurio.
Cuando uno arroja pilas con mercurio a la basura, estas van a parar junto con el resto de los residuos a la tierra. Y a pesar de estar descargadas, seguirán descargando ese mineral a su alrededor. Si multiplicamos las pilas que usa cada habitante por la cantidad de habitantes, nos daremos cuenta con horror, cómo estamos contaminando nuestra tierra con mercurio. O sea, que la posibilidad de ingesta de este mineral no es un mal lejano. Puede provocar daños cerebrales, en los riñones y en la función motor.
La mayoría (no todas) de las pilas y baterías "recargables" de ahora, carecen de mercurio. Sin embargo contienen níquel y cadmio, dos metales pesados altamente tóxicos.
La exposición al níquel puede destruir los tejidos de las membranas nasales. Mientras los estudios sobre el cadmio, lo califican como cancerígeno y causante de trastornos en el aparato digestivo. Además de resultar altamente peligroso para las embarazadas.
Jamás hay que tirar las pilas al inodoro o al río debido a que tienen un altísimo poder de contaminación en el agua.
En cuanto al destino final de las pilas, no es posible hoy en nuestro país y en muchos otros, pensar en el reciclado, no quedando otra alternativa que el almacenamiento en condiciones controladas.
Para las pilas alcalinas, no existe tecnología de reciclado desarrollada. En cuanto a las pilas de mercurio, que sí es posible reciclar, el problema es que el proceso es tremendamente costoso.
A corto y mediano plazo, no se vislumbra otro método posible que sustituir los metales tóxicos por otros que no presenten peligros, pero las alternativas que hasta ahora se han manejado, no ofrecen una solución universalmente practicable. En Alemania, existe desde 1986, un convenio entre el Ministerio de Medio Ambiente y los fabricantes, a fin de reducir el contenido de mercurio en las pilas. En España se busca una línea de pilas sin mercurio, y en diferentes países europeos se viene estudiando el problema relativo al poder contaminante que ellas poseen.
Las pilas son generadores portátiles que convierten la energía química en eléctrica. Por sus características químicas, pueden considerarse residuos nocivos con presencia de metales pesados.
Las pilas alcalinas, están compuestas por dióxido de manganeso y zinc, y las comunes por zinc y carbono.
Respecto a las microfilms, existen diferentes clases: las constituidas por zinc-aire, las alcalinas, las de óxido de plata, las de litio y 1as de óxido de mercurio, habiendo una larga lista de otros componentes.
Según estudios especializados, una micro pila de mercurio, puede llegar a contaminar 600.000 litros de agua, una de zinc-aire 12.000 litros, una de óxido de plata 14.000 litros y una pila común 3.000 litros.
Al descomponerse la capa protectora que las recubre, se liberan los metales que contienen, y allí se produce la contaminación.

0No comments yet