Check the new version here

Popular channels

El bosón de Higgs podría destruir el universo"

El bosón de Higgs podría destruir el universo"


El recién descubierto bosón de Higgs tiene potencial para destruir el universo, afirma Stephen Hawking. Adivina un "retraso catastrófico de vacío".

A niveles muy altos de energía, el bosón de Higgs podría causar el colapso instantáneo del espacio y del tiempo, afirma el célebre exprofesor de matemáticas de la Universidad de Cambridge, citado por 'The Daily Mail
'.
Es poco probable que este desastre ocurra, porque en el actual clima económico no hay financiación para el experimento


La 'partícula de Dios' podría causar un "retraso catastrófico de vacío" si los científicos lo someten a una presión extrema. Un desastre como este es muy poco probable por el momento, porque los físicos no tienen un acelerador de partículas lo suficientemente grande para desarrollar un experimento de este tipo, promete Hawking. El mencionado acelerador debería ser más grande que la Tierra "y es poco probable que se financiara en el actual clima económico".

"El potencial del bosón de Higgs tiene la preocupante característica de que podría convertirse en megaestable a energías superiores a 100.000 millones de giga-electrón-voltios (GeV)", escribe el científico en un libro.

El bosón de Higgs, supuesto en la década de 1960, finalmente apareció en 2012 en el Gran Colisionador de Hadrones en el CERN, cerca de Ginebra, Suiza. En 2013, algunos de los científicos detrás de este descubrimiento recibieron el Premio Nobel de Física.





Bosón de Higgs

El bosón de Higgs o partícula de Higgs es una partícula elemental propuesta en el Modelo estándar de física de partículas. Recibe su nombre en honor a Peter Higgs quien, junto con otros, propuso en 1964 el hoy llamado mecanismo de Higgs para explicar el origen de la masa de las partículas elementales. El Bosón de Higgs constituye el cuanto del campo de Higgs, (la más pequeña excitación posible de este campo). Según el modelo propuesto, no posee espín, carga eléctrica o color, es muy inestable y se desintegra rápidamente, su vida media es del orden del zeptosegundo. En algunas variantes del Modelo estándar puede haber varios bosones de Higgs.6

La existencia del bosón de Higgs y del campo de Higgs asociado serían el más simple de varios métodos del Modelo estándar de física de partículas que intentan explicar la razón de la existencia de masa en las partículas elementales. Esta teoría sugiere que un campo impregna todo el espacio, y que las partículas elementales que interactúan con él adquieren masa, mientras que las que no interactúan con él, no la tienen. En particular, dicho mecanismo justifica la enorme masa de los bosones vectoriales W y Z, como también la ausencia de masa de los fotones. Tanto las partículas W y Z, como el fotón son bosones sin masa propia, los primeros muestran una enorme masa porque interactúan fuertemente con el campo de Higgs, y el fotón no muestra ninguna masa porque no interactúa en absoluto con el campo de Higgs.

El bosón de Higgs ha sido objeto de una larga búsqueda en física de partículas.

El 4 de julio de 2012, el CERN anunció la observación de una nueva partícula «consistente con el bosón de Higgs», pero se necesitaría más tiempo y datos para confirmarlo.1 El 14 de marzo de 2013 el CERN, con dos veces más datos de los que disponía en el anuncio del descubrimiento en julio de 2012, encontraron que la nueva partícula se ve cada vez más como el bosón de Higgs. La manera en que interactúa con otras partículas y sus propiedades cuánticas, junto con las interacciones medidas con otras partículas, indican fuertemente que es un bosón de Higgs. Todavía permanece la cuestión de si es el bosón de Higgs del Modelo estándar o quizás el más liviano de varios bosones predichos en algunas teorías que van más allá del Modelo estándar.

El 8 de octubre de 2013 le es concedido a Peter Higgs, junto a François Englert, el Premio Nobel de física "por el descubrimiento teórico de un mecanismo que contribuye a nuestro entendimiento del origen de la masa de las partículas subatómicas, y que, recientemente fue confirmado gracias al descubrimiento de la predicha partícula fundamental, por los experimentos ATLAS y CMS en el Colisionador de Hadrones del CERN".


Introducción general

En la actualidad, prácticamente todos los fenómenos subatómicos conocidos son explicados mediante el modelo estándar, una teoría ampliamente aceptada sobre las partículas elementales y las fuerzas entre ellas. Sin embargo, en la década de 1960, cuando dicho modelo aún se estaba desarrollando, se observaba una contradicción aparente entre dos fenómenos. Por un lado, la fuerza nuclear débil entre partículas subatómicas podía explicarse mediante leyes similares a las del electromagnetismo (en su versión cuántica). Dichas leyes implican que las partículas que actúen como intermediarias de la interacción, como el fotón en el caso del electromagnetismo y las partículas W y Z en el caso de la fuerza débil, deben ser no masivas. Sin embargo, sobre la base de los datos experimentales, los bosones W y Z, que entonces sólo eran una hipótesis, debían ser masivos.

En 1964, tres grupos de físicos publicaron de manera independiente una solución a este problema, que reconciliaba dichas leyes con la presencia de la masa. Esta solución, denominada posteriormente mecanismo de Higgs, explica la masa como el resultado de la interacción de las partículas con un campo que permea el vacío, denominado campo de Higgs. Peter Higgs fue en solitario uno de los proponentes de dicho mecanismo. En su versión más sencilla, este mecanismo implica que debe existir una nueva partícula asociada con las vibraciones de dicho campo, el bosón de Higgs.

El modelo estándar quedó finalmente constituido haciendo uso de este mecanismo. En particular, todas las partículas masivas que lo forman interaccionan con este campo, y reciben su masa de él. Hasta la década de 1980, no se pudo realizar ningún experimento en el que se utilizase la energía necesaria para comenzar a buscar dicho bosón, dado que la masa que se estimaba que podría tener era demasiado alta (unos cientos de veces la masa del protón).

El Gran Colisionador de Hadrones (LHC) del CERN en Ginebra, Suiza, inaugurado en 2008, y cuyos experimentos empezaron en 2010, fue construido con el objetivo principal de encontrarlo, probar la existencia del Higgs, y medir sus propiedades, lo que permitiría a los físicos confirmar esta piedra angular de teoría moderna. Anteriormente también se intentó en el LEP (un acelerador previo del CERN) y en el Tevatron (de Fermilab, situado cerca de Chicago en Estados Unidos)




Historia


Los físicos de partículas sostienen que la materia está hecha de partículas fundamentales cuyas interacciones están mediadas por partículas de intercambio conocidas como partículas portadoras. A comienzos de la década de 1960 habían sido descubiertas o propuestas un número de estas partículas, junto con las teorías que sugieren cómo se relacionaban entre sí. Sin embargo era conocido que estas teorías estaban incompletas. Una omisión era que no podían explicar los orígenes de la masa como una propiedad de la materia. El teorema de Goldstone, relacionado con la simetría continua dentro de algunas teorías, también parecía descartar muchas soluciones obvias.

El mecanismo de Higgs es un proceso mediante el cual los bosones vectoriales pueden obtener masa invariante sin romper explícitamente la invariancia de gauge. La propuesta de ese mecanismo de ruptura espontánea de simetría fue sugerida originalmente en 1962 por Philip Warren Anderson y, en 1964, desarrollada en un modelo relativista completo de forma independiente y casi simultáneamente por tres grupos de físicos: por François Englert y Robert Brout; Las propiedades del modelo fueron adicionalmente consideradas por Guralnik en 1965 y Higgs en 1966. Los papeles mostraron que cuando una teoría de gauge es combinada con un campo adicional que rompe espontáneamente la simetría del grupo, los bosones de gauge pueden adquirir consistentemente una masa finita. En 1967, Steven Weinberg y Abdus Salam fueron los primeros en aplicar el mecanismo de Higgs a la ruptura de la simetría electrodébil y mostraron cómo un mecanismo de Higgs podría ser incorporado en la teoría electrodébil de Sheldon Glashow, en lo que se convirtió en el modelo estándar de física de partículas.

Los tres artículos escritos en 1964 fueron reconocidos como un hito durante la celebración del aniversario 50º de la Physical Review Letters.9 Sus seis autores también fueron galardonados por su trabajo con el Premio de J. J. Sakurai para física teórica de partículas10 (el mismo año también surgió una disputa; en el evento de un Premio Nobel, hasta 3 científicos serían elegibles, con 6 autores acreditados por los artículos). Dos de los tres artículos del PRL (por Higgs y GHK) contenían ecuaciones para el hipotético campo que eventualmente se conocería como el campo de Higgs y su hipotético cuanto, el bosón de Higgs. El artículo subsecuente de Higgs, de 1966, mostró el mecanismo de decaimiento del bosón; sólo un bosón masivo puede decaer y las desintegraciones pueden demostrar el mecanismo.

En el artículo de Higgs el bosón es masivo, y en una frase de cierre Higgs escribe que "una característica esencial" de la teoría "es la predicción de multipletes incompletos de bosones escalares y vectoriales". En el artículo de GHK el bosón no tiene masa y está desacoplado de estados masivos. En los exámenes de 2009 y 2011, Guralnik afirma que en el modelo GHK el bosón es sólo en una aproximación de orden más bajo, pero no está sujeta a ninguna restricción y adquiere masa a órdenes superiores y agrega que el artículo de GHK fue el único en mostrar que no hay ningún bosón de Goldstone sin masa en el modelo y en dar un completo análisis del mecanismo general de Higgs.


Además de explicar cómo la masa es adquirida por bosones de vector, el mecanismo de Higgs también predice la relación entre las masas de los bosones W y Z, así como sus acoplamientos entre sí y con el modelo estándar de quarks y leptones. Posteriormente, muchas de estas predicciones han sido verificados por precisas mediciones en los colisionadores LEP y SLC, abrumadoramente confirmando que algún tipo de mecanismo de Higgs tiene lugar en la naturaleza, pero aún no se ha descubierto la manera exacta por la que sucede. Se espera que los resultados de la búsqueda del bosón de Higgs proporcione evidencia acerca de cómo esto es realizado en la naturaleza.


.Propiedades



Muchas de las propiedades del bosón de Higgs, tal y como se describe en el modelo estándar, están totalmente determinadas. Como su nombre indica, es un bosón, tiene espín 0 (lo que se denomina un bosón escalar). No posee carga eléctrica ni carga de color, por lo que no interacciona con el fotón ni con los gluones. Sin embargo interacciona con todas las partículas del modelo que poseen masa: los quarks, los leptones cargados y los bosones W y Z de la interacción débil. Sus constantes de acoplo, que miden cuan intensa es cada una de esas interacciones, son conocidas: su valor es mayor cuanto mayor es la masa de la partícula correspondiente. En la versión original del modelo estándar, no se incluía la masa de los neutrinos ni, por tanto, una interacción entre estos y el Higgs. Aunque ésta podría explicar la masa de los neutrinos, en principio su origen puede tener una naturaleza distinta. El bosón de Higgs es además su propia antipartícula.

El modelo estándar no predice sin embargo la masa del Higgs, que ha de ser medida experimentalmente; tampoco el valor de algunos parámetros que dependen de ésta: las constantes de acoplo del Higgs consigo mismo –que miden cuan intensamente interaccionan dos bosones de Higgs entre sí– o su vida media. En primera aproximación, la masa del Higgs puede tomar cualquier valor. Sin embargo la consistencia matemática del modelo estándar impone cotas inferiores entre 85 y 130 GeV/c2, y cotas superiores entre 140 y 650 GeV/c2. Los experimentos llevados a cabo en los aceleradores LEP y Tevatron, y posteriormente en el LHC, han impuesto cotas experimentales para el valor de la masa del Higgs –siempre asumiendo el comportamiento del modelo estándar–. En julio de 2012 los dos experimentos del LHC efectuando búsquedas del Higgs, ATLAS y CMS, presentaron resultados que excluyen valores de la masa fuera del intervalo entre 123–130 GeV/c2 según ATLAS, y 122,5–127 GeV/c2 según CMS (ambos rangos con un 95% de nivel de confianza).Además, anunciaron el descubrimiento de un bosón con propiedades compatibles con las del Higgs, con una masa de aproximadamente 125–126 GeV/c2. Su vida media con esa masa sería aproximadamente 10−22 s, una parte en diez mil trillones de un segundo.



Alternativas
Desde los años en los que fue propuesto el bosón de Higgs han existido muchos mecanismos alternativos. Todas las otras alternativas usan una dinámica que interactúa fuertemente para producir un valor esperado del vacío que rompa la simetría electrodébil. Una lista parcial de esos mecanismos alternativos es:

Technicolor; es la clase de modelo que intenta imitar la dinámica de la fuerza fuerte como camino para romper la simetría electrodébil.
El modelo de Abbott-Farhi; de composición de los bosones de vectores W y Z.
Condensados de quarks top.



0
0
0
0No comments yet