Check the new version here

Popular channels

Paradoja del cumpleaños

Paradoja del cumpleaños

La paradoja del cumpleaños establece que si hay 23 personas reunidas hay una probablidad del 50,7% de que al menos dos personas de ellas cumplan años el mismo día. Para 60 o más personas la probabilidad es mayor del 99%. Obviamente es del 100% para 366 personas (teniendo en cuenta los años bisiestos). En sentido estricto esto no es una paradoja ya que no es una contradicción lógica; es una paradoja en el sentido que es una verdad matemática que contradice la común intuición. Mucha gente piensa que la probabilidad es mucho más baja, y que hacen falta muchas más personas para que se alcance la probabilidad del 50%.


Estimación de la probabilidad

Calcular esta probabilidad es el problema del cumpleaños. La teoría fue descrita en American Mathematical Monthly en 1938 en la teoría de Estimación del total de población de peces en un lago de Zoe Emily Schnabel, bajo el nombre de captura-recaptura estadística.

La clave para entender la paradoja del cumpleaños es pensar que hay muchas probabilidades de encontrar parejas que cumplan años el mismo día. Específicamente, entre 23 personas, hay 23×22/2 = 253 pares, cada uno de ellos un candidato potencial para cumplir la paradoja. Hay que entender que si usted entrase en una habitación con 22 personas, la probabilidad de que cualquiera cumpla años el mismo día que usted, no es del 50%, es mucho más baja. Esto es debido a que ahora sólo hay 22 pares posibles. El problema real de la paradoja del cumpleaños consiste en preguntar si el cumpleaños de cualquiera de las 23 personas coincide con el cumpleaños de alguna de las otras personas.

Para calcular la probabilidad aproximada que en una habitación de n personas, que al menos dos cumplan años el mismo día, desechando los años bisiestos y los gemelos, y asumimos que existen 365 cumpleaños que tienen la misma probabilidad. El truco es calcular primero la probabilidad de n cumpleaños son diferentes. Esta probabilidad es dada por


porque la segunda persona no puede tener el mismo cumpleaños que el primero (364/365), la tercera personas no puede tener el mismo cumpleaños que las dos primeras (363/365), etc. Usando notación factorial, puede ser escrita como


para n ≤ 365, y 0 para n > 365.

Ahora, 1 - p es la probabilidad que al menos dos personas tengan el mismo día de cumpleaños. Para n = 23 se obtiene una probabilidad de alrededor de 0,507.

En contraste, la probabilidad que cualquiera en una habitación de n personas tengan el mismo día de cumpleaños que usted está dada por


que para n = 22 sólo da alrededor de 0,059, y se necesitaría al menos una n de 253 para dar un valor de 0,5.


http://es.wikipedia.org/wiki/Paradoja_del_cumpleaños
0
19
0
19Comments
      VanBuuren

      No entendi un re carajo 🙁

      0
      twoboeings

      Estan las mentiras piadosas(buenas), y las estadisticas(malas)

      0
      gro77

      Estadisticamente no entendi

      0
      mdc7

      en una encuesta la mayoria gano y la minoria perdio... 🙄
      10 de cada 10 pascual tienen nombre tonto

      0
      bronson

      la estadistica sirve si le das usos militares, geneticos, investigaciones, para la
      astronomia... pero para la vida cotidiana, un bajon y re al pedo

      0
      chachacha

      rocamadur11 dice:
      "las estadisticas lo pruevan todo, el 70% de la gente lo sabe" H.Simpsons

      NO era asi ni a ganchos, era completamente lo contrario.
      "Las estadisticas no sirven para nada, el 70% de la gente lo sabe" . No era asi textual
      pero asi es el concepto. Si no, no tiene gracia 😉

      0
      luisgimenez33

      Existe una gran probabilidad que a este post no le den un punto

      0
      rocamadur11

      "las estadisticas lo pruevan todo, el 70% de la gente lo sabe" H.Simpsons

      0
      twoboeings

      Las probabilidades no me quieren ni yo a ellas.

      0
      luk

      Aburrido :-p

      0
      Tano_Mdq

      que post interesaaaaaaaante...

      0
      baco

      estadisticas... com odio la probabilidad y estadisticas.. materia de mierda !!!

      0
      Juno

      Seeee...??? que horror, ya no me acuerdo del análisis combinatorio... seeeee???

      0
      jos_nqn

      uh hay que pensar mucho..

      0
      santo

      pero nadie va al cumpleanios de otro si cumple ese mismo dia

      0
      elfindetodo

      segun las estadisticas si mi vecino tiene 2 autos y yo ninguno, ambos tenemos un auto
      cada uno... 😄

      0
      NeronDeMerthiolate

      Aunque no lo crean es cierto...
      Trabajo en una escuela y año a año puedo comprobarlo en los listados.
      😊

      0
      Alien

      😯 😯

      0
      killthequeen19

      estadistica???

      noooooooooooooooooooooooooooooooooooooooooooooooooooooo

      😢

      0