epelpad

El post que buscas se encuentra eliminado, pero este también te puede interesar

fisicoquimica

fisicoquimica

HOLA,AMIGOS EN ESTE POST QUERÍA COLOCAR UNA AYUDITA PARA LOS QUE SE LLEVAN LA MATERIA FISICOQUIMICA,ESPERO QUE LES SEA DE AYUDA,BESITOS...

estados

MATERIA


DEFINICIÓN:La materia es todo lo que tiene "MASA" y "OCUPA UN LUGAR EN EL ESPACIO" ,si la materia tiene estas dos propiedades significa que es cuantificable (ES DECIR QUE SE PUEDE MEDIR)
Todo lo que podemos imaginar esta compuesto por materia,DESDE UN LIBRO,HASTA UN AUTO,LA COMPUTADORA,LA SILLA EN LA QUE ESTAMOS SENTADOS,EL PISO Y MISMO EL AIRE QUE ESTAMOS RESPIRANDO,esta compuesto por materia NOSOTROS MISMOS,ESTAMOS COMPUESTOS POR MATERIA,LOS INSECTOS,Y MISMO LOS OBJETOS INANIMADOS,COMO LAS ROCAS.
De acuerdo con este ejemplo todo nuestro mundo natural esta compuesto por materia,la cual puede estar constituida
por uno o mas materiales diferentes,por ejemplo el agua,la madera o un trozo de granito.Si se muele el granito,se van a obtener diferentes tipos de materiales.
La cantidad de materia de un cuerpo viene dada por su "masa" lo cual se mide casi-siempre por kilogramos,en múltiplo de unidades o bien submúltiplos (en fisicoquimica casi siempre se mide en gramos).La masa representa una medida de la inercia o resistencia que opone un cuerpo a acelerarse cuando se halla sometido a una fuerza. Esta fuerza puede derivarse del campo gravitatorio terrestre, y en este caso se denomina peso.(La masa y el peso se confunden a menudo en el lenguaje corriente; no son sinónimos)
COMPOSICIÓN DE LA MATERIA :
La materia esta compuesta por " ÁTOMOS" las cuales a su ves se compones por particulasma pequeñas llamadas " PARTÍCULAS SUB-ATÓMICAS"las cuales se agrupan para constituir los diferentes objetos.
Un átomo es la menor cantidad de un elemento químico que tiene existencia propia y puede entrar en combinación. Está constituido por un núcleo, en el cual se hallan los protones y neutrones y una corteza, donde se encuentran los electrones. Cuando el número de protones del núcleo es igual al de electrones de la corteza, el átomo se encuentra en estado eléctricamente neutro.
Se denomina número atómico al número de protones que existen en el núcleo del átomo de un elemento. Si un átomo pierde o gana uno o más electrones adquiere carga positiva o negativa, convirtiéndose en un ION. Los iones se denominan cationes si tienen carga positiva y aniones si tienen carga negativa.
La mayoría de los científicos cree que toda la materia contenida en el Universo se creó en una explosión denominada Big Bang, que desprendió una enorme cantidad de calor y de energía. Al cabo de unos pocos segundos, algunos de los haces de energía se transformaron en partículas diminutas que, a su vez, se convirtieron en los átomos que integran el Universo en que vivimos.

En la naturaleza los átomos se combinan formando las moléculas. Una molécula es una agrupación de dos o más átomos unidos mediante enlaces químicos. La molécula es la mínima cantidad de una sustancia que puede existir en estado libre conservando todas sus propiedades químicas.

Todas las sustancias están formadas por moléculas. Una molécula puede estar formada por un átomo (monoatómica), por dos átomos (diatómica), por tres átomos (triatómica) o más átomos (poliatómica)

Las moléculas de los cuerpos simples están formadas por uno o más átomos idénticos (es decir, de la misma clase). Las moléculas de los compuestos químicos están formadas al menos por dos átomos de distinta clase (o sea, de distintos elementos).

Continuidad de la materia

Si se tiene una determinada cantidad de una sustancia cualquiera, como por ejemplo, de agua y se desea dividirla lo más posible, en mitades sucesivas, llegará un momento en que no podrá dividirse más, ya que se obtendría la cantidad más pequeña de agua.

Esta mínima cantidad de agua, tal como se dijo anteriormente, corresponde a una molécula. Si esta molécula se dividiera aún más, ya no sería agua lo que se obtendría, sino que átomos de hidrógeno y de oxígeno que son los constituyentes de la molécula de agua.

Por lo tanto, una molécula es la partícula de materia más pequeña que puede existir como sustancia compuesta. Cuando la molécula de agua: (H2O) se divide en dos átomos de hidrógeno y un átomo de oxígeno, la sustancia dejó de ser agua.

Los científicos han demostrado que la materia, sea cual fuere su estado físico, es de naturaleza corpuscular, es decir, la materia está compuesta por partículas pequeñas, separadas unas de otras.

Elementos, compuestos y mezclas

Las sustancias que conforman la materia se pueden clasificar en elementos, compuestos y mezclas.

Los elementos son sustancias que están constituidas por átomos iguales, o sea de la misma naturaleza. Por ejemplo: hierro, oro, plata, calcio, etc. Los compuestos están constituidos por átomos diferentes.

El agua y el hidrógeno son ejemplos de sustancias puras. El agua es un compuesto mientras que el hidrógeno es un elemento. El agua está constituida por dos átomos de hidrógeno y uno de oxígeno y el hidrógeno únicamente por dos átomos de hidrógeno.

Si se somete el agua a cambios de estado, su composición no varía porque es una sustancia pura, pero si se somete a cambios químicos el agua se puede descomponer en átomos de hidrógeno y de oxígeno. Con el hidrógeno no se puede hacer lo mismo. Si se somete al calor, la molécula seguirá estando constituida por átomos de hidrógeno. Si se intenta separarla por medios químicos siempre se obtendrá hidrógeno.

En la naturaleza existen más de cien elementos químicos conocidos (Ver Tabla Periódica de los Elementos) y más de un millón de compuestos.

Las mezclas se obtienen de la combinación de dos o más sustancias que pueden ser elementos o compuestos. En las mezclas no se establecen enlaces químicos entre los componentes de la mezcla. Las mezclas pueden ser homogéneas o heterogéneas.

Las mezclas homogéneas son aquellas en las cuales todos sus componentes están distribuidos uniformemente, es decir, la concentración es la misma en toda la mezcla, en otras palabras en la mezcla hay una sola fase. Ejemplos de mezclas homogéneas son la limonada, sal disuelta en agua, etc. Este tipo de mezcla se denomina solución o disolución.

Las mezclas heterogéneas son aquellas en las que sus componentes no están distribuidos uniformemente en toda la mezcla, es decir, hay más de una fase; cada una de ellas mantiene sus características. Ejemplo de este tipo de mezcla es el agua con el aceite, arena disuelta en agua, etc; en ambos ejemplos se aprecia que por más que se intente disolver una sustancia en otra siempre pasado un determinado tiempo se separan y cada una mantiene sus características.

Propiedades de la materia

Las propiedades de la materia corresponden a las características específicas por las cuales una sustancia determinada puede distinguirse de otra. Estas propiedades pueden clasificarse en dos grupos:

Propiedades físicas: ependen fundamentalmente de la sustancia misma. Pueden citarse como ejemplo el color, el olor, la textura, el sabor, etc.

Propiedades químicas: dependen del comportamiento de la materia frente a otras sustancias. Por ejemplo, la oxidación de un clavo (está constituido de hierro).

Las propiedades físicas pueden clasificarse a su vez en dos grupos:

Propiedades físicas extensivas: dependen de la cantidad de materia presente. Corresponden a la masa, el volumen, la longitud.

Propiedades físicas intensivas: dependen sólo del material, independientemente de la cantidad que se tenga, del volumen que ocupe, etc. Por ejemplo, un litro de agua tiene la misma densidad que cien litros de agua

Estados físicos de la materia

En condiciones no extremas de temperatura, la materia puede presentarse en tres estados físicos diferentes: estado sólido, estado líquido y estado gaseoso.

Los sólidos poseen forma propia como consecuencia de su rigidez y su resistencia a cualquier deformación. La densidad de los sólidos es en general muy poco superior a la de los líquidos, de manera que no puede pensarse que esa rigidez característica de los sólidos sea debida a una mayor proximidad de sus moléculas; además, incluso existen sólidos como el hielo que son menos densos que el líquido del cual provienen. Además ocupan un determinado volumen y se dilatan al aumentar la temperatura.

Esa rigidez se debe a que las unidades estructurales de los sólidos, los átomos, moléculas y iones, no pueden moverse libremente en forma caótica como las moléculas de los gases o, en menor grado, de los líquidos, sino que se encuentran en posiciones fijas y sólo pueden vibrar en torno a esas posiciones fijas, que se encuentran distribuidas, de acuerdo con un esquema de ordenación, en las tres direcciones del espacio.

La estructura periódica a que da lugar la distribución espacial de los elementos constitutivos del cuerpo se denomina estructura cristalina, y el sólido resultante, limitado por caras planas paralelas, se denomina cristal. Así, pues, cuando hablamos de estado sólido, estamos hablando realmente de estado cristalino.

Los líquidos se caracterizan por tener un volumen propio, adaptarse a la forma de la vasija en que están contenidos, poder fluir, ser muy poco compresibles y poder pasar al estado de vapor a cualquier temperatura. Son muy poco compresibles bajo presión, debido a que, a diferencia de lo que ocurre en el caso de los gases, en los líquidos la distancia media entre las moléculas es muy pequeña y, así, si se reduce aún más, se originan intensas fuerzas repulsivas entre las moléculas del líquido.

El hecho de que los líquidos ocupen volúmenes propios demuestra que las fuerzas de cohesión entre sus moléculas son elevadas, mucho mayores que en el caso de los gases, pero también mucho menores que en el caso de los sólidos. Las moléculas de los líquidos no pueden difundirse libremente como las de los gases, pero las que poseen mayor energía cinética pueden vencer las fuerzas de cohesión y escapar de la superficie del líquido (evaporación).

Los gases se caracterizan porque llenan completamente el espacio en el que están encerrados. Si el recipiente aumenta de volumen el gas ocupa inmediatamente el nuevo espacio, y esto es posible sólo porque existe una fuerza dirigida desde el seno del gas hacia las paredes del recipiente que lo contiene. Esa fuerza por unidad de superficie es la presión.

Los gases son fácilmente compresibles y capaces de expansionarse indefinidamente.

Los cuerpos pueden cambiar de estado al variar la presión y la temperatura. El agua en la naturaleza cambia de estado al modificarse la temperatura; se presenta en estado sólido, como nieve o hielo, como líquido y en estado gaseoso como vapor de agua (nubes).

Materia viva e inerte

La Tierra alberga a muchos seres vivos, como son las plantas y animales. Una mariposa parece algo muy distinto de una piedra; sin embargo, ambas están compuestas de átomos, aunque éstos se combinan de manera diferente en uno y otro caso. Lamayor parte de la materia es inanimada; es decir, no crece, ni se reproduce, ni se mueve por sí misma. Un buen ejemplo de materia inanimada lo constituyen las rocas que componen la Tierra.

Cambios de la materia

Los cambios que puede experimentar la materia se pueden agrupar en dos campos:

Cambios físicos

Cambios químicos

Los cambios físicos son aquellos en los que no hay ninguna alteración o cambio en la composición de la sustancia. Pueden citarse como cambios físicos los cambios de estado (fusión, evaporación, sublimación, etc.), y los cambios de tamaño o forma. Por ejemplo, cuando un trozo de plata se ha transformado en una anillo, en una bandeja de plata, en unos aretes, se han producido cambios físicos porque la plata mantiene sus propiedades en los diferentes objetos.

En general, los cambios físicos son reversibles, es decir, se puede volver a obtener la sustancia en su forma inicial

Los cambios químicos son las transformaciones que experimenta una sustancia cuando su estructura y composición varían, dando lugar a la formación de una o más sustancias nuevas. La sustancia se transforma en otra u otras sustancias diferentes a la original.

El origen de una nueva sustancia significa que ha ocurrido un reordenamiento de los electrones dentro de los átomos, y se han creado nuevos enlaces químicos. Estos enlaces químicos determinarán las propiedades de la nueva sustancia o sustancias.

La mayoría de los cambios químicos son irreversibles. Ejemplos: al quemar un papel no podemos obtenerlo nuevamente a partir de las cenizas y los gases que se liberan en la combustión; el cobre se oxida en presencia de oxígeno formando otra sustancia llamada óxido de cobre. Sin embargo, hay otros cambios químicos en que la adición de otra sustancia provoca la obtención de la sustancia original y en este caso se trata de un cambio químico reversible; así, pues, para provocar un cambio químico reversible hay que provocar otro cambio químico.

Cambios de estados físicos

La materia cambia de estado físico según se le aplique calor o se le aplique frío.

Cuando se aplica calor a los cuerpos se habla de Cambios de estado Progresivos de la materia. Cuandolos cuerpos se enfrían se habla de Cambios de estado Regresivos.

Los cambios de estado progresivos son:

• Sublimación Progresiva

• Fusión

• Evaporación

1. Sublimación progresiva: Este cambio se produce cuando un cuerpo pasa del estado sólido al gaseoso directamente. La sublimación progresiva sólo ocurre en algunas sustancias, como, el yodo y la naftalina.

2. Fusión. Es el paso de una sustancia, del estado sólido al líquido por la acción del calor. La temperatura a la que se produce la fusión es característica de cada sustancia. Por ejemplo la temperatura a la que ocurre la fusión del hielo es O° C mientras la del hierro es de 1.525° C. La temperatura constante a la que ocurre la fusión se denomina punto de fusión.

3. Evaporación. Es el paso de una sustancia desde el estado líquido al gaseoso. Este cambio de estado ocurre normalmente a la temperatura ambiente, y sin necesidad de aplicar calor. Bajo esas condiciones, sólo las partículas de la superficie del líquido pasarán al estado gaseoso, mientras que aquéllas que están más abajo seguirán en el estado inicial. Sin embargo, si se aplica mayor calor, tanto las partículas de la superficie como las del interior del líquido podrán pasar al estado gaseoso. El cambio de estado así producido se denomina ebullición. La temperatura que cada sustancia necesita para alcanzar la ebullición es característica, y se denomina punto de ebullición. Por ejemplo, al nivel del mar el alcohol tiene un punto de ebullición de 78,5° C y el agua de 100°C.

La temperatura a la que ocurre la fusión o la ebullición de una sustancia es un valor constante, es independiente de la cantidad de sustancia y no varía aún cuando ésta continúe calentándose.

El punto de fusión y el punto de ebullición pueden considerarse como las huellas digitales de una sustancia, puesto que corresponden a valores característicos, propios de cada una y permiten su identificación.

SUSTANCIA P. DE FUSIÓN (C°) P. DE EBULLICIÓN
AGUA 0 100
ALCOHOL -117 78
HIERRO 1.539 2.750
COBRE 1.083 2.600
ALUMINIO 660 2.400
PLOMO 328 1.750
MERCURIO -39 357

Los cambios de estado regresivos de la materia son:

• Sublimación regresiva

• Solidificación

• Condensación

1. Sublimación regresiva. Es el cambio de estado que ocurre cuando una sustancia gaseosa se vuelve sólida, sin pasar por el estado líquido.

2. Solidificación. Es el paso de una sustancia desde el estado líquido al sólido. Este proceso ocurre a una temperatura característica para cada sustancia denominada punto de solidificación y que coincide con su punto de fusión.

3. Condensación. Es el cambio de estado que se produce en una sustancia al pasar del estado gaseoso al estado líquido. La temperatura a que ocurre esta transformación se llama punto de condensación y corresponde al punto de ebullición de dicha sustancia. Este cambio de estado es uno de los más aprovechados por el hombre en la destilación fraccionada del petróleo, mediante la cual se obtienen los derivados como la parafina, bencina y gas de cañería.
Ley de la Conservación de la Materia:

Antoine Lavoisier, químico francés, demostró luego de largos y cuidadosos trabajos con la balanza, que en las reacciones químicas la masa total del sistema no cambiaba. Este descubrimiento constituyó uno de los logros más importantes de la Química.



La ley puede enunciarse de la siguiente manera:

“En un sistema cerrado, en el cual se producen reacciones químicas, la materia no se crea ni se destruye, sólo se transforma; es decir, la masa de los reactantes es igual a la masa de los productos”.



A + B ----------> C + D


A y B representan compuestos químicos que al reaccionar dan origen a C y D. Los compuestos A y B son los reactantes porque reaccionan para generar los productos C y D. La masa de los reactantes es igual a la masa de los productos.

MASA(a)+ M(b) = M(c) + M(d)
Como ejemplo, podemos ver la ecuación química que representa la oxidación catalítica del amonía:
4NH3 + 5O2 ---------> 4NO + 6H2O

En ambos lados de la ecuación química la suma de los átomos es la misma, aunque la suma de las moléculas sea distinta. En cada lado de la ecuación hay 4 átomos de nitrógeno (N), 12 átomos de hidrógeno (H) y 10 átomos de oxígeno (O), distribuidos en moléculas diferentes.

Hoy se sabe que la Ley de la Conservación de la Materia o Ley de Lavoisier no es totalmente exacta, ya que en reacciones nucleares puede desaparecer masa, que se transforma en energía.

liquidos


PESO


El peso de un cuerpo es la fuerza con que lo atrae la Tierra y depende de la masa del mismo. Un cuerpo de masa el doble que otro, pesa también el doble. Se mide ennewtons (N) , y tambien en kg-fuerza,dinas,libras-fuerza,onzas-fuerza,etc

materia

MASA


La masa de un cuerpo es una propiedad característica del mismo, que está relacionada con el número y clase de las partículas que lo forman. Se mide en kilogramos,en gramos,toneladas,libras,onzas,etc.

Fisicoquimica

VOLUMEN


VOLUMEN:Además de masa, los cuerpos tienen una extensión en el espacio, ocupan un volumen. El volumen de un cuerpo representa la cantidad de espacio que ocupa su materia y que no puede ser ocupado por otro cuerpo, ya que los cuerpos son impenetrables.

El volumen también es una propiedad general de la materia y, por tanto, no permite distinguir un tipo de materia, una sustancia, de otra, ya que todas tienen un volumen.
El volumen es una magnitud definida como el espacio ocupado por un cuerpo. Es una función derivada ya que se halla multiplicando las tres dimensiones.

En matemáticas el volumen es una medida que se define como los demás conceptos métricos a partir de una distancia o tensor métrico.

En física, el volumen es una magnitud física extensiva asociada a la propiedad de los cuerpos físicos de ser extensos, que a su vez se debe al principio de exclusión de Pauli.

La unidad de medida de volumen en el Sistema Internacional de Unidades es el metro cúbico, aunque
temporalmente también acepta el litro y el mililitro que se utilizan comúnmente en la vida práctica.


solidos


PROPIEDADES INTENSIVAS:

Son las que no dependen de la cantidad de materia pueden ser todas aquellas que se persivencon el sentidocomo el color,olor,sabor,brillo,etc.
Ademas tambien se incluyen los estadosde agregaciónel punto defusión y de ebullición y la densidad.

PROPIEDADES EXTENSIVAS:

Las propiedades extensivas son las generales y dependende la cantidad de materia que se presenta son la masa,el peso,el volumen,y la superficie.

Gaseosos

TEORÍA CORPUSCULAR DE LA MATERIA:


La teoría científica actual que explica la estructura interna de la materia y sus estados físicos se denomina teoría corpuscular esta sostiene que la materia esta formada por partículas o corpúsculos y espacios entre ellos.Estas partículas son tan pequeñas que es imposible observarlas individualmente.Los espacios vacíos que se hallan entre las partículas hacen que la materia sea discontinua entre los corpúsculos que ejercen fuerzas de distinta intensidad.
Las ideas mas importantes de esta teoría son:

*La materia esta formada por partículas.

*La variedad de materiales se debe a la diversidad de partículas.

*Entre las partículas hay espacios donde no hay nada es decir hay vacío.

*Entre las partículas se ejercen fuerzas de variada intensidad.

*Las partículas se mueven,ya sea por desplazamiento ,por vibración o por rotación.

teor��as


ESTADOS DE AGREGACIÓN:


En fisicoquimica se observa que, para cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Todos los estados de agregación poseen propiedades y características diferentes, los más conocidos y observables cotidianamente son cinco, las llamadas fases sólida, líquida, gaseosa, plasmática y condensado de Bose-Einstein.

fisicoquimica


ESTADO SOLIDO:



Los objetos en estado sólido se presentan como cuerpos de forma compacta y precisa; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.
Las sustancias en estado sólido suelen presentar algunas de las siguientes características:

*Cohesión elevada.

*Forma definida.

*Incompresibilidad.

*Resistencia a la fragmentación.

*Fluidez muy baja o nula.

*Algunos de ellos se subliman.


estados


ESTADO LIQUIDO:


Si se incrementa la temperatura, el sólido va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos.
El estado líquido presenta las siguientes características:

*Cohesión menor.

*Movimiento energía cinética
.
*No poseen forma definida.

*Toma la forma de la superficie o el recipiente que lo contiene.

*En el frío se contrae (exceptuando el agua).

*Posee fluidez a través de pequeños orificios.

*Puede presentar difusión.

*Volumen constante


liquidos

ESTADO GASEOSO:


Incrementando aún más la temperatura, se alcanza el estado gaseoso. Las moléculas del gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos.
El estado gaseoso presenta las siguientes características:

*Cohesión casi nula.

*No tienen forma definida.

*Su volumen es variable.


materia


ESTADO PLAMASTICO:


El plasma es un gas ionizado, es decir que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones y cationes (iones con carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.
En la baja Atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos,(ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.
A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.
Perfil de la ionosfera
La parte superior de la ionosfera se extiende en el espacio algunos cientos de kilómetros y se combina con la magnetosfera, cuyo plasma está generalmente más rarificado y también más caliente. Los iones y los electrones del plasma de la magnetosfera provienen de la ionosfera que está por debajo y del viento solar y muchos de los pormenores de su entrada y calentamiento no están claros aún.
Existe el plasma interplanetario, el viento solar. La capa más externa del Sol, la corona, está tan caliente que no sólo están ionizados todos sus átomos, sino que aquellos que comenzaron con muchos electrones, tienen arrancados la mayoría (a veces todos), incluidos los electrones de las capas más profundas que están más fuertemente unidos. En la corona del Sol se ha detectado la radiación electromagnética característica del hierro que ha perdido 13 electrones.
Esta temperatura extrema evita que el plasma de la corona permanezca cautivo por la gravedad solar y, así, fluye en todas direcciones, llenando el Sistema Solar más allá de los planetas más distantes.
Propiedades del plasma:
Hay que decir que hay 2 tipos de plasma, fríos y calientes.
En los fríos, los átomos se encuentran a temperatura ambiente y son los electrones los que se aceleran hasta alcanzar una temperatura de 5000 °C. Pero como los iones, que son muchísimo más masivos, están a temperatura ambiente, no queman al tocarlos.
En los plasma calientes, la ionización se produce por los choques de los átomos entre sí. Lo que hace es calentar un gas mucho y por los propios choques de los átomos entre sí se ionizan. Estos mismos átomos ionizados también capturan electrones y en ese proceso se genera luz (por eso el Sol brilla, y brilla el fuego, y brillan los plasmas de los laboratorios).

Fisicoquimica


CONDENSADO DE BOSE-EINSTEIN:


Esta nueva forma de la materia fue obtenida el 5 de julio de 1995, por los físicos Eric Cornell, Wolfgan Ketterle y Carl Wieman, por lo que fueron galardonados en 2001 con el Premio Nobel de física. Los científicos lograron enfriar los átomos a una temperatura 300 veces más bajo que lo que se había logrado anteriormente. Se le ha llamado "BEC, Bose - Einstein Condensado" y es tan frío y denso que aseguran que los átomos pueden quedar inmóviles. Todavía no se sabe cuál será el mejor uso que se le pueda dar a este descubrimiento. Este estado fue predicho por Nath Bose y Albert Einstein en 1926.

solidos


Los cambios de estado descritos también se producen si se incrementa la presión manteniendo constante la temperatura. Así, el hielo de las pistas se funde por la presión ejercida por el peso de los patinadores. Esta agua sirve de lubricante, permitiendo el suave deslizamiento de los patinadores.
Para cada elemento o compuesto químico existen determinadas condiciones de presión y temperatura a las que se producen los cambios de estado, debiendo interpretarse, cuando se hace referencia únicamente a la temperatura de cambio de estado, que ésta se refiere a la presión de la atm. (la presión atmosférica). De este modo, en "condiciones normales" (presión atmosférica, 0 °C) hay compuestos tanto en estado sólido como líquido y gaseoso (S, L y G).
Los procesos en los que una sustancia cambia de estado son: la sublimación (S-G), la vaporización (L-G), la condensación (G-L), la solidificación (L-S), la fusión (S-L), y la sublimación inversa (G-S). Es importante aclarar que estos cambios de estado tienen varios nombres.

Gaseosos

foto sacada de Internet. ate: ailen 2010

teor��as


ESCALAS DE TEMPERATURA:



La temperatura es el nivel de calor en un gas, líquido, o sólido. Tres escalas sirven comúnmente para medir la temperatura. Las escalas de Celsius y de Fahrenheit son las más comunes. La escala de Kelvin es primordialmente usada en experimentos científicos.

Escala Celsius

La escala Celsius fue inventada en 1742 por el astrónomo sueco Andrés Celsius. Esta escala divide el rango entre las temperaturas de congelación y de ebullición del agua en 100 partes iguales. Usted encontrará a veces esta escala identificada como escala centígrada. Las temperaturas en la escala Celsius son conocidas como grados Celsius (ºC).

Escala Fahrenheit

La escala Fahrenheit fue establecida por el físico holandés-alemán Gabriel Daniel Fahrenheit, en 1724. Aun cuando muchos países están usando ya la escala Celsius, la escala Fahrenheit es ampliamente usada en los Estados Unidos. Esta escala divide la diferencia entre los puntos de fusión y de ebullición del agua en 180 intervalos iguales. Las temperaturas en la escala Fahrenheit son conocidas como grados Fahrenheit (ºF).

Escala de Kelvin

La escala de Kelvin lleva el nombre de William Thompson Kelvin, un físico británico que la diseñó en 1848. Prolonga la escala Celsius hasta el cero absoluto, una temperatura hipotética caracterizada por una ausencia completa de energía calórica. Las temperaturas en esta escala son llamadas Kelvins (K).

Cómo Convertir Temperaturas

A veces hay que convertir la temperatura de una escala a otra. A continuación encontrará cómo hacer esto.


Para convertir de ºC a ºF use la fórmula: ºF = ºC x 1.8 + 32.

Para convertir de ºF a ºC use la fórmula: ºC = (ºF-32) ÷ 1.8.

Para convertir de K a ºC use la fórmula: ºC = K – 273.15

Para convertir de ºC a K use la fórmula: K = ºC + 273.15.

Para convertir de ºF a K use la fórmula: K = 5/9 (ºF – 32) + 273.15.

Para convertir de K a ºF use la fórmula: ºF = 1.8(K – 273.15) + 32.


fisicoquimica


LEYES DE LOS GASES:


LEY BOYLE:

Fue descubierta por Robert Boyle en 1662. Edme Mariotte también llegó a la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676. Esta es la razón por la que en muchos libros encontramos esta ley con el nombre de Ley de Boyle y Mariotte.

La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando la temperatura es constante.

El volumen es inversamente proporcional a la presión:

•Si la presión aumenta, el volumen disminuye.
•Si la presión disminuye, el volumen aumenta.

¿Por qué ocurre esto?

Al aumentar el volumen, las partículas (átomos o moléculas) del gas tardan más en llegar a las paredes del recipiente y por lo tanto chocan menos veces por unidad de tiempo contra ellas. Esto significa que la presión será menor ya que ésta representa la frecuencia de choques del gas contra las paredes.

Cuando disminuye el volumen la distancia que tienen que recorrer las partículas es menor y por tanto se producen más choques en cada unidad de tiempo: aumenta la presión.

Lo que Boyle descubrió es que si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen siempre tiene el mismo valor.

Como hemos visto, la expresión matemática de esta ley es:



(el producto de la presión por el volumen es constante)

Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:



que es otra manera de expresar la ley de Boyle.

Ejemplo:

4.0 L de un gas están a 600.0 mmHg de presión. ¿Cuál será su nuevo volumen si aumentamos la presión hasta 800.0 mmHg?

Solución: Sustituimos los valores en la ecuación P1-V1 = P2-V2.


(600.0 mmHg) (4.0 L) =(800.0 mmHg) (V2)

Si despejas V2 obtendrás un valor para el nuevo volumen de 3L.

LEY DE CHARLES:

En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y observó que cuando se aumentaba la temperatura el volumen del gas también aumentaba y que al enfriar el volumen disminuía.

El volumen es directamente proporcional a la temperatura del gas:

•Si la temperatura aumenta, el volumen del gas aumenta.
•Si la temperatura del gas disminuye, el volumen disminuye.

¿Por qué ocurre esto?

Cuando aumentamos la temperatura del gas las moléculas se mueven con más rapidez y tardan menos tiempo en alcanzar las paredes del recipiente. Esto quiere decir que el número de choques por unidad de tiempo será mayor. Es decir se producirá un aumento (por un instante) de la presión en el interior del recipiente y aumentará el volumen (el émbolo se desplazará hacia arriba hasta que la presión se iguale con la exterior).

Lo que Charles descubrió es que si la cantidad de gas y la presión permanecen constantes, el cociente entre el volumen y la temperatura siempre tiene el mismo valor.

Matemáticamente podemos expresarlo así:



(el cociente entre el volumen y la temperatura es constante)

Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una temperatura T1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la temperatura cambiará a T2, y se cumplirá:



que es otra manera de expresar la ley de Charles.

Esta ley se descubre casi ciento cuarenta años después de la de Boyle debido a que cuando Charles la enunció se encontró con el inconveniente de tener que relacionar el volumen con la temperatura Celsius ya que aún no existía la escala absoluta de temperatura.

Ejemplo:

Un gas tiene un volumen de 2.5 L a 25 °C. ¿Cuál será su nuevo volumen si bajamos la temperatura a 10 °C?

Recuerda que en estos ejercicios siempre hay que usar la escala Kelvin.

Solución: Primero expresamos la temperatura en kelvin:

T1 = (25 + 273) K= 298 K

T2 = (10 + 273 ) K= 283 K

Ahora sustituimos los datos en la ecuación:

2.5L V2
------- = ---------
298K 283K

Si despejas V2 obtendrás un valor para el nuevo volumen de 2.37 L.

LEY DE GAY-LUSSAC

Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800.
Establece la relación entre la temperatura y la presión de un gas cuando el volumen es constante.

La presión del gas es directamente proporcional a su temperatura:

•Si aumentamos la temperatura, aumentará la presión.
•Si disminuimos la temperatura, disminuirá la presión.

¿Por qué ocurre esto?

Al aumentar la temperatura las moléculas del gas se mueven más rápidamente y por tanto aumenta el número de choques contra las paredes, es decir aumenta la presión ya que el recipiente es de paredes fijas y su volumen no puede cambiar.

Gay-Lussac descubrió que, en cualquier momento de este proceso, el cociente entre la presión y la temperatura siempre tenía el mismo valor:



(el cociente entre la presión y la temperatura es constante)

Supongamos que tenemos un gas que se encuentra a una presión P1 y a una temperatura T1 al comienzo del experimento. Si variamos la temperatura hasta un nuevo valor T2, entonces la presión cambiará a P2, y se cumplirá:



que es otra manera de expresar la ley de Gay-Lussac.

Esta ley, al igual que la de Charles, está expresada en función de la temperatura absoluta. Al igual que en la ley de Charles, las temperaturas han de expresarse en Kelvin.

Ejemplo:

Cierto volumen de un gas se encuentra a una presión de 970 mmHg cuando su temperatura es de 25.0°C. ¿A qué temperatura deberá estar para que su presión sea 760 mmHg?

Solución: Primero expresamos la temperatura en kelvin:

T1 = (25 + 273) K= 298 K

Ahora sustituimos los datos en la ecuación:

970mmHg 760mmHg

- - - - - - - = - - - - - - - -

298 k T2


Si despejas T2 obtendrás que la nueva temperatura deberá ser 233.5 K o lo que es lo mismo -39.5 °C.

estados


SOLUCIONES QUIMICAS:


Las soluciones son sistemas homogéneosformados básicamente por dos componentes. Solvente y Soluto. El primero se encuentra en menor proporción. La masa total de la solución es la suma de la masa de soluto mas la masa de solvente.

Las soluciones químicas pueden tener cualquier estado físico. Las más comunes son las líquidas, en donde el soluto es un sólido agregado al solvente líquido. Generalmente agua en la mayoría de los ejemplos. También hay soluciones gaseosas, o de gases en líquidos, como el oxígeno en agua. Las aleaciones son un ejemplo de soluciones de sólidos en sólidos.

La capacidad que tiene un soluto de disolverse en un solvente depende mucho de la temperatura y de las propiedades químicas de ambos. Por ejemplo, los solventes polares como el agua y el alcohol, están preparados para disolver a solutos iónicos como la mayoría de los compuestos inorgánicos, sales, óxidos, hidróxidos. Pero no disolverán a sustancias como el aceite. Pero este si podrá disolverse en otros solventes como solventes orgánicos no polares.


CONCENTRACION:

La concentración es la relación que existe entre la cantidad de soluto y la cantidad de solución o de solvente. Esta relación se puede expresar de muchas formas distintas. Una de ellas se refiere a los porcentajes.

Porcentaje masa en masa o peso en peso, (%m/m):Es la cantidad en gramos de soluto por cada 100 gramos de solución. Ej: Una solución 12% m/m tiene 12 gramos de soluto en 100 gramos de solución.

Como formula, podemos expresar esta relación así:

%m/m = x 100

Porcentaje masa en volumen (%m/v): Es la cantidad en gramos de soluto por cada 100 ml de solución. Aquí como se observa se combina el volumen y la masa. Ej: Una solución que es 8% m/v tiene 8 gramos de soluto en 100 ml de solución.

Fórmula: % m/v = x 100

Porcentaje volumen en volumen (%v/v): Es la cantidad de mililitros o centímetros cúbicos que hay en 100 mililitros o centímetros cúbicos de solución. Ej: Una solución 16% v/v tiene 16 ml de soluto por 100 ml de solución.

Fórmula: % v/v = x 100

Otras formas son la Molaridad, la Normalidad y la Molalidad.

Es bueno recordad antes el concepto de mol. El mol de una sustancia es el peso molecular de esa sustancia expresada en gramos. Estos datos se obtienen de la tabla periódica de los elementos.



Sumando las masas de los elementos se obtiene la masa de la sustancia en cuestión.

Molaridad: Es la cantidad de moles de soluto por cada litro de solución. Como fórmula:

M = n/V

M = M: Molaridad. n: Número de moles de soluto. V: Volumen de solución expresado en litros.

Normalidad: Es la cantidad de equivalentes químicos de soluto por cada litro de solución. Como fórmula:

N = n eq/V

N = Normalidad. n eq. : Número de equivalentes del soluto. V: Volumen de la solución en litros.

Molalidad: Es la cantidad de moles de soluto por cada 1000 gramos de solvente. En fórmula:

m = n/kgs solvente

m = Molalidad. n: Número de moles de soluto por Kg = 1000 gramos de solvente o 1 kg de solvente.


liquidos


CAMBIOS FISICOS Y CAMBIOS QUIMICOS:


- En los cambios físicos, las sustancias mantienen su naturaleza y sus propiedades esenciales, es decir, siguen siendo las mismas sustancias.
- En los cambios químicos, las sustancias iniciales se transforman en otras distintas, que tienen propiedades diferentes.

materia


TIPOS DE REACCIONES QUIMICAS:


-Composición o síntesis: Es aquella donde dos o más sustancias se unen para formar un solo producto.
2CaO(s) + H2O(l) → Ca(OH)2(ac)

-Descomposición o análisis: ocurre cuando un átomo sustituye a otro en una molécula.
2HgO (s) → 2Hg(l) + O2(g)


-Neutralización: en ella un ácido reacciona con una base para formar una sal y desprender agua.
H2SO4 (ac) + 2NaOH(ac) → Na2SO4(ac) + 2H2O(l)


-Desplazamiento: un átomo sustituye a otro en una molécula.
CuSO4 + Fe → FeSO4 + Cu


-Intercambio o doble desplazamiento: se realiza por intercambio de átomos entre las sustancias que se relacionan.
K2S + MgSO4 → K2SO4 + MgS


-Sin transferencia de electrones: se presenta solamente una redistribución de los elementos para formar otros sustancias. No hay intercambio de electrones. Como en las reacciones de doble desplazamiento.


-Con transferencia de electrones (REDOX): hay cambio en el número de oxidación de algunos átomos en los reactivos con respecto a los productos. como en las reacciones de síntesis, descomposición, desplazamiento.


-Reacción endotérmica: es aquella que necesita el suministro de calor para llevarse a cabo.
2NaH + Energia → 2Na(s)+ H2(g)


-Reacción exotérmica: es aquella que desprende calor cuando se produce.
2C ( grafito) + H2(g) → C2H2 (g) ΔH=54.85 kcal

BUENO ESO FUE TODO POR AHORA,ESPERO QUE LES SIRVA DE AYUDA...



Fisicoquimica



solidos

3 comentarios - fisicoquimica

Diegolotito
Le falta algun grafico y las fuentes...
Pero está muy bien. +10
Intoxicacion_FD
Falta imagenes , pone algun video explicativo porque es interesante y lindo post !!